1 |
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023;209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Reference Citation Analysis]
|
2 |
Hou W, Nsengimana B, Yan C, Nashan B, Han S. Involvement of endoplasmic reticulum stress in rifampicin-induced liver injury. Front Pharmacol 2022;13:1022809. [DOI: 10.3389/fphar.2022.1022809] [Reference Citation Analysis]
|
3 |
Mori A, Masuda T, Ito S, Ohtsuki S. Human Hepatic Transporter Signature Peptides for Quantitative Targeted Absolute Proteomics: Selection, Digestion Efficiency, and Peptide Stability. Pharm Res 2022. [PMID: 36131112 DOI: 10.1007/s11095-022-03387-8] [Reference Citation Analysis]
|
4 |
Wen Y, Zhang G, Wu X. The role of the farnesoid X receptor in quadruple anti-tuberculosis drug-induced liver injury. Toxicology 2022;476:153256. [PMID: 35835356 DOI: 10.1016/j.tox.2022.153256] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
5 |
Maeda K, Sugiyama Y. IN VITRO–IN VIVO SCALE‐UP OF DRUG TRANSPORT ACTIVITIES. Drug Transporters 2022. [DOI: 10.1002/9781119739883.ch22] [Reference Citation Analysis]
|
6 |
Liu L, Yang Y, Li W, Li Y, Jiang X, Wang L. Tanshinone IIA alleviate rifampicin-induced cholestasis by regulating the expression and function of bile salt export pump. Hum Exp Toxicol 2022;41:9603271221097365. [PMID: 35544702 DOI: 10.1177/09603271221097365] [Reference Citation Analysis]
|