1 |
Mansur AAP, Custódio DAC, Dorneles EMS, Coura FM, Carvalho IC, Lage AP, Mansur HS. Nanoplexes of ZnS quantum dot-poly-l-lysine/iron oxide nanoparticle-carboxymethylcellulose for photocatalytic degradation of dyes and antibacterial activity in wastewater treatment. Int J Biol Macromol 2023;231:123363. [PMID: 36690232 DOI: 10.1016/j.ijbiomac.2023.123363] [Reference Citation Analysis]
|
2 |
Moyano-arocutipa MF, Zarria-romero JY, Huertas-chambilla MY, Checca-huaman N, Pino J, Passamani EC, Arencibia A, Ramos-guivar JA. In Situ and after Synthesis of Magnetic Nanoarchitectures Grown onto Zeolite Type 5A/CTAB Frameworks and Their Ecotoxicological Properties. Crystal Growth & Design 2023. [DOI: 10.1021/acs.cgd.3c00076] [Reference Citation Analysis]
|
3 |
Zhang M, Song W, Chen T, Sun D, Zhang D, Li C, Li R, Zhang J, Ramakrishna S, Long Y. Rotation-Mode Liquid-Solid Triboelectric Nanogenerator for Efficient Contact-Electro-Catalysis and Adsorption. Nano Energy 2023. [DOI: 10.1016/j.nanoen.2023.108329] [Reference Citation Analysis]
|
4 |
Mejía ME, Pariona N, Bravo JA, Ramos-guivar JA, Mtz-enriquez AI. Synthesis and characterization of maghemite submicron particles: novel adsorbent for arsenic removal. Hyperfine Interact 2023;244:8. [DOI: 10.1007/s10751-023-01819-4] [Reference Citation Analysis]
|
5 |
Chen Q, Lü F, Zhang H, He P. Where should Fenton go for the degradation of refractory organic contaminants in wastewater? Water Res 2023;229:119479. [PMID: 36521313 DOI: 10.1016/j.watres.2022.119479] [Reference Citation Analysis]
|
6 |
Lim CC, Ng QH, Hoo PY, Enche Ab Rahim SK, Jamalludin MR, Nasib AM, Wicaksono ST, Pramata AD, Zullaikah S. Facial synthesis of colloidal stable magnetic nanoparticles coated with high hydrophilic negative charged poly(4‐styrenesulfonic acid co‐maleic acid) sodium for water remediation. Polymers for Advanced Techs 2023. [DOI: 10.1002/pat.5974] [Reference Citation Analysis]
|
7 |
Gao Y, Yang P, Zhu J. Particle size-dependent effects of silver nanoparticles on swim bladder damage in zebrafish larvae. Ecotoxicol Environ Saf 2023;249:114363. [PMID: 36508826 DOI: 10.1016/j.ecoenv.2022.114363] [Reference Citation Analysis]
|
8 |
Balasubramanian S, Kanagarathinam S, Cingaram R, Bakthavachalam V, Kulathu Iyer S, Rajendran S, Natesan Sundaramurthy K, Ranganathan S. Waste toner-derived porous iron oxide pigments with enhanced catalytic degradation property. Environ Res 2023;216:114695. [PMID: 36351473 DOI: 10.1016/j.envres.2022.114695] [Reference Citation Analysis]
|
9 |
Zarria-romero JY, Ocampo-anticona J, Pinotti CN, Passamani EC, Checca-huaman N, Castro-merino I, Pino J, Shiga B, Ramos-guivar JA. Ecotoxicological properties of functionalized magnetic graphene oxide and multiwall carbon nanotubes in Daphnia magna. Ceramics International 2023. [DOI: 10.1016/j.ceramint.2023.01.102] [Reference Citation Analysis]
|
10 |
Fraga TJM, Ghislandi MG, Cavalcanti JVFL, da Motta Sobrinho MA, Simonnot M. The use of graphene nanocomposites in the remediation of contaminated soils: Synergies, effectiveness, and liabilities. Novel Materials for Environmental Remediation Applications 2023. [DOI: 10.1016/b978-0-323-91894-7.00020-7] [Reference Citation Analysis]
|
11 |
Azzam AM, Shenashen MA, Tawfik A, Safwat NA, Mostafa BB, El-safty SA. Antimicrobial activity of mesoporous organic functionalized hexagon Fe3O4 nanosheets for wastewater treatment. Environmental Nanotechnology, Monitoring & Management 2022;18:100739. [DOI: 10.1016/j.enmm.2022.100739] [Reference Citation Analysis]
|
12 |
Zhang F, Wang Z, Peijnenburg WJGM, Vijver MG. Review and Prospects on the Ecotoxicity of Mixtures of Nanoparticles and Hybrid Nanomaterials. Environ Sci Technol 2022;56:15238-50. [PMID: 36196869 DOI: 10.1021/acs.est.2c03333] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Wei Z, Du Y, Lü X, Wang W, Del Sole R, Mele G, Jiang Z. High-performance Fe3O4-terephthalaldehyde magnetic-nanocomposite for removal phenanthrene and 9-phenanthrol: A comprehensive experimental and theoretical analysis. Separation and Purification Technology 2022. [DOI: 10.1016/j.seppur.2022.122610] [Reference Citation Analysis]
|
14 |
Wan K, Liu C, Wang Y, Zhang W, Qi P, Guo L, Wei G, Liu X. Recent advances in the synthesis and regulation of 3D metal carbide-based hybrid architectures for water environmental remediation and monitoring. Journal of Environmental Chemical Engineering 2022. [DOI: 10.1016/j.jece.2022.108994] [Reference Citation Analysis]
|
15 |
Mansur AAP, Carvalho SM, Oliveira LCA, Souza-fagundes EM, Lobato ZIP, Leite MF, Mansur HS. Bioengineered Carboxymethylcellulose–Peptide Hybrid Nanozyme Cascade for Targeted Intracellular Biocatalytic–Magnetothermal Therapy of Brain Cancer Cells. Pharmaceutics 2022;14:2223. [DOI: 10.3390/pharmaceutics14102223] [Reference Citation Analysis]
|
16 |
Bonesio MDR, Nogueira FGE, Mancini DT, Ribeiro LS, Ramalho TC. A simple methodology for obtaining novel heterojunction photocatalyst NiO/δ-FeOOH: a theoretical and experimental study. J IRAN CHEM SOC 2022. [DOI: 10.1007/s13738-022-02676-8] [Reference Citation Analysis]
|
17 |
Xiao W, Xiao L, Lv Y, Yin W, Sánchez J, Zhai S, An Q, Sun R. Lignin-derived carbon coated nanoscale zero-valent iron as a novel bifunctional material for efficient removal of Cr(VI) and organic pollutants. Separation and Purification Technology 2022;299:121689. [DOI: 10.1016/j.seppur.2022.121689] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Sürmeli M, Yazıcı H, Kılıç M, Karaboyacı M. Screening of optimum composition of superparamagnetic nanocomposite microparticles modified with various layered double hydroxides for phosphorus removal. Journal of Water Process Engineering 2022;49:103001. [DOI: 10.1016/j.jwpe.2022.103001] [Reference Citation Analysis]
|
19 |
Muntean S, Halip L, Nistor M, Pacurariu C. Efficient separation and removal of dyes from single and multiple systems by magnetic/silver/carbon nanocomposite: Mechanism and mathematical modeling. Sustainable Chemistry and Pharmacy 2022;29:100802. [DOI: 10.1016/j.scp.2022.100802] [Reference Citation Analysis]
|
20 |
Lathiya P, Wang J. Magnetite Nanoparticles (Fe3O4) for Radio-Frequency and Microwave Applications. Iron Oxide Nanoparticles 2022. [DOI: 10.5772/intechopen.104930] [Reference Citation Analysis]
|
21 |
Moreira JB, Santos TD, Zaparoli M, de Almeida ACA, Costa JAV, de Morais MG. An Overview of Nanofiltration and Nanoadsorption Technologies to Emerging Pollutants Treatment. Applied Sciences 2022;12:8352. [DOI: 10.3390/app12168352] [Reference Citation Analysis]
|
22 |
Saied E, Salem SS, Al-askar AA, Elkady FM, Arishi AA, Hashem AH. Mycosynthesis of Hematite (α-Fe2O3) Nanoparticles Using Aspergillus niger and Their Antimicrobial and Photocatalytic Activities. Bioengineering 2022;9:397. [DOI: 10.3390/bioengineering9080397] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
23 |
Abbas Omran K, Pandian S. The Construct and Interpretation of Chelated Coordination Polymers and Their Use in Nanomaterials Research. Journal of Environmental and Public Health 2022;2022:1-13. [DOI: 10.1155/2022/3937375] [Reference Citation Analysis]
|
24 |
Xue Y, Karmakar B, Alsalem HS, Binkadem MS, Al-goul ST, Bani-fwaz MZ, El-kott AF, Ageeli AM, Alsayegh AA, El-saber Batiha G. Green Nanoarchitectonics of Cu/Fe3O4 Nanoparticles Using Helleborus niger Extract Towards an Efficient Nanocatalyst, Antioxidant and Anti-lung Cancer Agent. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02430-w] [Reference Citation Analysis]
|
25 |
Xu L, Zhang L, Dongfengren, Peng Y, Liu Z, Meng Y, Deng W, Zhang Y. Green synthesis of Cu/Fe3O4 nanoparticles using green tea extract: Evaluation of its catalytic activity, antioxidant and anti-colon cancer effects. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.109927] [Reference Citation Analysis]
|
26 |
Mansur AA, Leonel AG, Krambrock K, Mansur HS. Bifunctional oxidase-peroxidase inorganic nanozyme catalytic cascade for wastewater remediation. Catalysis Today 2022;397-399:129-44. [DOI: 10.1016/j.cattod.2021.11.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
27 |
Isaev AB, Magomedova AG. Advanced Oxidation Processes Based Emerging Technologies for Dye Wastewater Treatment. Moscow Univ Chem Bull 2022;77:181-196. [DOI: 10.3103/s0027131422040046] [Reference Citation Analysis]
|
28 |
Ahmad Wani A, Shahadat M, Mumtaz Khan A, Wazed Ali S, Ziauddin Ahmad S, Kashi Uddin M. Recent Advances and Future Perspectives of Polymer-Based Magnetic Nanomaterials for Detection and Removal of Radionuclides: A review. Journal of Molecular Liquids 2022. [DOI: 10.1016/j.molliq.2022.119976] [Reference Citation Analysis]
|
29 |
Flores-cano DA, Checca-huaman N, Castro-merino I, Pinotti CN, Passamani EC, Litterst FJ, Ramos-guivar JA. Progress toward Room-Temperature Synthesis and Functionalization of Iron-Oxide Nanoparticles. IJMS 2022;23:8279. [DOI: 10.3390/ijms23158279] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
30 |
Chu D, Dong H, Li Y, Xiao J, Xiang S, Dong Q, Hou X. Insights into the correlation between different adsorption/oxidation/catalytic performance and physiochemical characteristics of Fe-Mn oxide-based composites. J Hazard Mater 2022;439:129631. [PMID: 35872460 DOI: 10.1016/j.jhazmat.2022.129631] [Reference Citation Analysis]
|
31 |
Tian H, He B, Yin Y, Liu L, Shi J, Hu L, Jiang G. Chemical Nature of Metals and Metal-Based Materials in Inactivation of Viruses. Nanomaterials (Basel) 2022;12:2345. [PMID: 35889570 DOI: 10.3390/nano12142345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
32 |
El‐shafai NM, Ramadan MS, El‐mehasseb IM. Decoration of modified self‐assembly membrane by magnesium oxide and yttrium oxide nanoparticles for biosensors, supercapacitors, and water treatment. Intl J of Energy Research. [DOI: 10.1002/er.8107] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
33 |
Xiong Z, Huang Y, Huang Z, Shi Y, Qu F, Zhang G, Yang J, Zhao S. Confining Nano-Fe3O4 in the Superhydrophilic Membrane Skin Layer to Minimize Internal Fouling. ACS Appl Mater Interfaces 2022;14:26044-56. [PMID: 35609300 DOI: 10.1021/acsami.2c04685] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Le Wee J, Law MC, Chan YS, Choy SY, Tiong ANT. The Potential of Fe‐Based Magnetic Nanomaterials for the Agriculture Sector. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202104603] [Reference Citation Analysis]
|
35 |
Gong Y, Wang Y, Lin N, Wang R, Wang M, Zhang X. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives. Environmental Pollution 2022;299:118871. [DOI: 10.1016/j.envpol.2022.118871] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 35.0] [Reference Citation Analysis]
|
36 |
Nisticò R. A Comprehensive Study on the Applications of Clays into Advanced Technologies, with a Particular Attention on Biomedicine and Environmental Remediation. Inorganics 2022;10:40. [DOI: 10.3390/inorganics10030040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
|
37 |
Hyder MKMZ, Mir SH. Performance of Metal-Based Nanoparticles and Nanocomposites for Water Decontamination. Inorganic-Organic Composites for Water and Wastewater Treatment 2022. [DOI: 10.1007/978-981-16-5928-7_3] [Reference Citation Analysis]
|
38 |
Leonel AG, Mansur AAP, Mansur HS. Nanotoxicity and Environmental Risks of Magnetic Iron Oxide Nanoparticles and Nanohybrids. Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites 2022. [DOI: 10.1007/978-3-030-90948-2_36] [Reference Citation Analysis]
|
39 |
Ganiyu SO, Nidheesh PV, Oturan MA. Synthesis and application of nanostructured iron oxides heterogeneous catalysts for environmental applications. Advanced Materials for Sustainable Environmental Remediation 2022. [DOI: 10.1016/b978-0-323-90485-8.00014-x] [Reference Citation Analysis]
|
40 |
de Oliveira Guidolin T, Cechinel MAP, Arcaro S. Iron-Based Nanomaterials for Fenton Reaction. Environmental Applications of Nanomaterials 2022. [DOI: 10.1007/978-3-030-86822-2_8] [Reference Citation Analysis]
|
41 |
Leonel AG, Mansur AAP, Mansur HS. Magnetic Iron Oxide Nanoparticles and Nanohybrids for Advanced Water Treatment Technology. Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites 2022. [DOI: 10.1007/978-3-030-34007-0_37-1] [Reference Citation Analysis]
|
42 |
Reis MDO, de Sousa RG, Batista ADSM. Synthesis and characterization of poly(styrene-co-divinylbenzene) and nanomagnetite structures. MethodsX 2022;9:101764. [DOI: 10.1016/j.mex.2022.101764] [Reference Citation Analysis]
|
43 |
Book F, Persson M, Carmona E, Backhaus T, Lammel T. Colloidal silica nanomaterials reduce the toxicity of pesticides to algae, depending on charge and surface area. Environ Sci : Nano 2022;9:2402-2416. [DOI: 10.1039/d1en01180d] [Reference Citation Analysis]
|
44 |
Li Y, Zhu H, Duan J, Wu Y, Wu D. Laser-induced photoexcited audible sound effect based on reticular 2-bromo-2-methylpropionic acid modified Fe3O4 nanoparticle aggregates. Nanoscale 2022. [DOI: 10.1039/d2nr04895g] [Reference Citation Analysis]
|
45 |
Li A, Qiao Y, Jiang X, Zhao M, Zhao L. Facile synthesis of high-efficiency magnetic graphitic carbon nitride adsorbents for the selective removal of hazardous anionic dyes in wastewater. Dalton Trans 2022;51:15842-15853. [DOI: 10.1039/d2dt02320b] [Reference Citation Analysis]
|
46 |
Leonel AG, Mansur AAP, Mansur HS. Nanotoxicity and Environmental Risks of Magnetic Iron Oxide Nanoparticles and Nanohybrids. Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites 2022. [DOI: 10.1007/978-3-030-34007-0_36-1] [Reference Citation Analysis]
|
47 |
Mapossa AB, Mhike W, Adalima JL, Tichapondwa S. Removal of Organic Dyes from Water and Wastewater Using Magnetic Ferrite-Based Titanium Oxide and Zinc Oxide Nanocomposites: A Review. Catalysts 2021;11:1543. [DOI: 10.3390/catal11121543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
48 |
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Cited by in Crossref: 20] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
|
49 |
Yin Y, Lv R, Li X, Lv L, Zhang W. Exploring the mechanism of ZrO2 structure features on H2O2 activation in Zr–Fe bimetallic catalyst. Applied Catalysis B: Environmental 2021;299:120685. [DOI: 10.1016/j.apcatb.2021.120685] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
50 |
He M, Liang Q, Tang L, Liu Z, Shao B, He Q, Wu T, Luo S, Pan Y, Zhao C, Niu C, Hu Y. Advances of covalent organic frameworks based on magnetism: Classification, synthesis, properties, applications. Coordination Chemistry Reviews 2021;449:214219. [DOI: 10.1016/j.ccr.2021.214219] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
51 |
Chauhan G, González-González RB, Iqbal HMN. Bioremediation and decontamination potentials of metallic nanoparticles loaded nanohybrid matrices - A review. Environ Res 2022;204:112407. [PMID: 34801543 DOI: 10.1016/j.envres.2021.112407] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
|
52 |
Abdel Maksoud MIA, Fahim RA, Bedir AG, Osman AI, Abouelela MM, El-sayyad GS, Elkodous MA, Mahmoud AS, Rabee MM, Al-muhtaseb AH, Rooney DW. Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. Environ Chem Lett. [DOI: 10.1007/s10311-021-01351-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
53 |
Etemadi H, Buchanan JK, Kandile NG, Plieger PG. Iron Oxide Nanoparticles: Physicochemical Characteristics and Historical Developments to Commercialization for Potential Technological Applications. ACS Biomater Sci Eng 2021. [PMID: 34786932 DOI: 10.1021/acsbiomaterials.1c00938] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
54 |
Xu X, Lin R, Deng X, Liu J. In situ synthesis of FeOOH-coated trimanganese tetroxide composites catalyst for enhanced degradation of sulfamethoxazole by peroxymonosulfate activation. Separation and Purification Technology 2021;275:119184. [DOI: 10.1016/j.seppur.2021.119184] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
55 |
Amaral-júnior JC, Mansur AA, Carvalho IC, Mansur HS. Optically photoactive Cu–In–S@ZnS core-shell quantum dots/biopolymer sensitized TiO2 nanostructures for sunlight energy harvesting. Optical Materials 2021;121:111557. [DOI: 10.1016/j.optmat.2021.111557] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
56 |
González-Rodríguez J, Gamallo M, Conde JJ, Vargas-Osorio Z, Vázquez-Vázquez C, Piñeiro Y, Rivas J, Feijoo G, Moreira MT. Exploiting the Potential of Supported Magnetic Nanomaterials as Fenton-Like Catalysts for Environmental Applications. Nanomaterials (Basel) 2021;11:2902. [PMID: 34835666 DOI: 10.3390/nano11112902] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
57 |
Gallo-Cordova A, Ovejero JG, Pablo-Sainz-Ezquerra AM, Cuya J, Jeyadevan B, Veintemillas-Verdaguer S, Tartaj P, Morales MDP. Unravelling an amine-regulated crystallization crossover to prove single/multicore effects on the biomedical and environmental catalytic activity of magnetic iron oxide colloids. J Colloid Interface Sci 2021;608:1585-97. [PMID: 34742075 DOI: 10.1016/j.jcis.2021.10.111] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
58 |
Muthukumaran P, Suresh Babu P, Shyamalagowri S, Kamaraj M, Manikandan A, Aravind J. Nanotechnological approaches as a promising way for heavy metal mitigation in an aqueous system. J Basic Microbiol 2021. [PMID: 34609759 DOI: 10.1002/jobm.202100365] [Reference Citation Analysis]
|
59 |
Gao Y, Wu W, Qiao K, Feng J, Zhu L, Zhu X. Bioavailability and toxicity of silver nanoparticles: Determination based on toxicokinetic-toxicodynamic processes. Water Res 2021;204:117603. [PMID: 34536684 DOI: 10.1016/j.watres.2021.117603] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
60 |
Rajendran A, Alsawalha M, Alomayri T. Biogenic synthesis of husked rice-shaped iron oxide nanoparticles using coconut pulp (Cocos nucifera L.) extract for photocatalytic degradation of Rhodamine B dye and their in vitro antibacterial and anticancer activity. Journal of Saudi Chemical Society 2021;25:101307. [DOI: 10.1016/j.jscs.2021.101307] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
|
61 |
Ibrahim IN, Rahman MAAQ, Hannandya MA, Avicenna MH, Bathista MD, Pratama MMA. An overview of the permeable reactive barrier as part of water remediation system in tropical countries. IOP Conf Ser : Earth Environ Sci 2021;847:012035. [DOI: 10.1088/1755-1315/847/1/012035] [Reference Citation Analysis]
|
62 |
Kobylinska N, Klymchuk D, Shakhovsky A, Khainakova O, Ratushnyak Y, Duplij V, Matvieieva N. Biosynthesis of magnetite and cobalt ferrite nanoparticles using extracts of "hairy" roots: preparation, characterization, estimation for environmental remediation and biological application. RSC Adv 2021;11:26974-87. [PMID: 35480010 DOI: 10.1039/d1ra04080d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
63 |
Jia Y, Ni J, Wu P, Fang F, Zhang Y. Fast removal of Congo red from aqueous solution by adsorption onto micro/nanostructured NiO microspheres. Materials Science and Engineering: B 2021;270:115228. [DOI: 10.1016/j.mseb.2021.115228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
64 |
Aragaw TA, Bogale FM, Aragaw BA. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society 2021;25:101280. [DOI: 10.1016/j.jscs.2021.101280] [Cited by in Crossref: 37] [Cited by in F6Publishing: 20] [Article Influence: 18.5] [Reference Citation Analysis]
|
65 |
Mudhoo A, Sillanpää M. Magnetic nanoadsorbents for micropollutant removal in real water treatment: a review. Environ Chem Lett 2021;:1-21. [PMID: 34341658 DOI: 10.1007/s10311-021-01289-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
|
66 |
Soares SF, Amorim CO, Amaral JS, Trindade T, Daniel-da-silva AL. On the efficient removal, regeneration and reuse of quaternary chitosan magnetite nanosorbents for glyphosate herbicide in water. Journal of Environmental Chemical Engineering 2021;9:105189. [DOI: 10.1016/j.jece.2021.105189] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
|
67 |
Gallo-Cordova A, Veintemillas-Verdaguer S, Tartaj P, Mazarío E, Morales MDP, Ovejero JG. Engineering Iron Oxide Nanocatalysts by a Microwave-Assisted Polyol Method for the Magnetically Induced Degradation of Organic Pollutants. Nanomaterials (Basel) 2021;11:1052. [PMID: 33924017 DOI: 10.3390/nano11041052] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
68 |
Khabazipour M, Anbia M. Process optimization and adsorption modeling using hierarchical ZIF-8 modified with Lanthanum and Copper for sulfate uptake from aqueous solution: Kinetic, Isotherm and Thermodynamic studies. J Inorg Organomet Polym 2021;31:2401-24. [DOI: 10.1007/s10904-021-01878-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
69 |
Anaspure P, Suriyanarayanan S, Nicholls IA. Palladium nanoparticles immobilized on polyethylenimine-derivatized gold surfaces for catalysis of Suzuki reactions: development and application in a lab-on-a-chip context. RSC Adv 2021;11:35161-35164. [DOI: 10.1039/d1ra06851b] [Reference Citation Analysis]
|
70 |
Leonel AG, Mansur AAP, Carvalho SM, Outon LEF, Ardisson JD, Krambrock K, Mansur HS. Tunable magnetothermal properties of cobalt-doped magnetite–carboxymethylcellulose ferrofluids: smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy. Nanoscale Adv 2021;3:1029-46. [DOI: 10.1039/d0na00820f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
71 |
Bondarenko L, Terekhova V, Kahru A, Dzhardimalieva G, Kelbysheva E, Tropskaya N, Kydralieva K. Sample preparation considerations for surface and crystalline properties and ecotoxicity of bare and silica-coated magnetite nanoparticles. RSC Adv 2021;11:32227-32235. [DOI: 10.1039/d1ra05703k] [Reference Citation Analysis]
|