BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020;289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Cited by in Crossref: 20] [Cited by in F6Publishing: 39] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Yi W, Zhu H, Wu Y, Li Q, Lou W, Zhao H, Pan Z. The recombinant Erns and truncated E2-based indirect enzyme-linked immunosorbent assays to distinguishably test specific antibodies against classical swine fever virus and bovine viral diarrhea virus. Virol J 2022;19. [DOI: 10.1186/s12985-022-01851-w] [Reference Citation Analysis]
2 Yang S, Zhang D, Ji Z, Zhang Y, Wang Y, Chen X, He Y, Lu X, Li R, Guo Y, Shen Q, Ji L, Wang X, Li Y, Zhang W. Viral Metagenomics Reveals Diverse Viruses in Tissue Samples of Diseased Pigs. Viruses 2022;14:2048. [DOI: 10.3390/v14092048] [Reference Citation Analysis]
3 Chen N, Wang Q, Hu Y, Sun Y, Li J, Wu H, Xu L, Liu H, Yang C, Chen X, Deng Y, Xia Y, Zhang Q, Cheng S, Fan A, Chen G. Comparative efficacy evaluation of different CSF vaccines in pigs with CSF maternally derived antibodies. Vet Microbiol 2022;273:109541. [PMID: 36027683 DOI: 10.1016/j.vetmic.2022.109541] [Reference Citation Analysis]
4 Wang L, Mi S, Madera R, Li Y, Gong W, Tu C, Shi J. A Novel Competitive ELISA for Specifically Measuring and Differentiating Immune Responses to Classical Swine Fever C-Strain Vaccine in Pigs. Viruses 2022;14:1544. [PMID: 35891524 DOI: 10.3390/v14071544] [Reference Citation Analysis]
5 Dhar P, Das SC, Manu M, Mahapatra CS, Latheef SK. Development and validation of an in vitro titrimetric method for determination of classical swine fever viruses in PK-15 cells. J Immunol Methods 2022;508:113321. [PMID: 35839841 DOI: 10.1016/j.jim.2022.113321] [Reference Citation Analysis]
6 Sun RC, Hu JH, Li XH, Liu CC, Liu YY, Chen J, Yang YC, Zhou B. Valosin-containing protein (VCP/p97) is responsible for the endocytotic trafficking of classical swine fever virus. Vet Microbiol 2022;272:109511. [PMID: 35849988 DOI: 10.1016/j.vetmic.2022.109511] [Reference Citation Analysis]
7 Strong R, Mccleary S, Grierson S, Choudhury B, Steinbach F, Crooke HR. Molecular Epidemiology Questions Transmission Pathways Identified During the Year 2000 Outbreak of Classical Swine Fever in the UK. Front Microbiol 2022;13:909396. [DOI: 10.3389/fmicb.2022.909396] [Reference Citation Analysis]
8 Wang M, Bohórquez JA, Muñoz-González S, Gerber M, Alberch M, Pérez-Simó M, Abad X, Liniger M, Ruggli N, Ganges L. Removal of the Erns RNase Activity and of the 3' Untranslated Region Polyuridine Insertion in a Low-Virulence Classical Swine Fever Virus Triggers a Cytokine Storm and Lethal Disease. J Virol 2022;:e0043822. [PMID: 35758667 DOI: 10.1128/jvi.00438-22] [Reference Citation Analysis]
9 Amorim MS, Sales MGF, Frasco MF. Recent advances in virus imprinted polymers. Biosensors and Bioelectronics: X 2022;10:100131. [DOI: 10.1016/j.biosx.2022.100131] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Acosta A, Cardenas NC, Imbacuan C, Lentz HH, Dietze K, Amaku M, Burbano A, Gonçalves VS, Ferreira F. Modelling control strategies against Classical Swine Fever: influence of traders and markets using static and temporal networks in Ecuador. Preventive Veterinary Medicine 2022. [DOI: 10.1016/j.prevetmed.2022.105683] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wu X, Chen Q, Huang Y, Ning Q, Wang Y, Wang Y, Liu Z. Signal-enhanced visual strand exchange amplification detection of African swine fever virus by the introduction of multimeric G-quadruplex/hemin DNAzyme. ANAL SCI . [DOI: 10.1007/s44211-022-00087-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Wang T, Liu Y, Sun Y, Zhang L, Guo K, Zhang Y. Rab22a cooperates with Rab5 and NS4B in classical swine fever virus entry process. Veterinary Microbiology 2022;266:109363. [DOI: 10.1016/j.vetmic.2022.109363] [Reference Citation Analysis]
13 Pavulraj S, Pannhorst K, Stout RW, Paulsen DB, Carossino M, Meyer D, Becher P, Chowdhury SI. A Triple Gene-Deleted Pseudorabies Virus-Vectored Subunit PCV2b and CSFV Vaccine Protects Pigs against PCV2b Challenge and Induces Serum Neutralizing Antibody Response against CSFV. Vaccines 2022;10:305. [DOI: 10.3390/vaccines10020305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liu H, Shi K, Zhao J, Yin Y, Chen Y, Si H, Qu S, Long F, Lu W. Development of a one-step multiplex qRT–PCR assay for the detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus. BMC Vet Res 2022;18. [DOI: 10.1186/s12917-022-03144-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Zhao P, Wang C, Xia Y, Hu Y, Fang R, Zhao J. Seroprevalence Investigation of Classic Swine Fever Virus Before, During, and After African Swine Fever Virus Outbreak in Some Provinces of China from 2017 to 2021. Viral Immunol 2022. [PMID: 35020503 DOI: 10.1089/vim.2021.0109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Soler V, Casas E, Closa-Sebastià F, Sanz A, Martorell J. Health status of free-ranging pure and cross-mixed miniature swine population from Northeast Spain. Vet Med Sci 2021. [PMID: 34791799 DOI: 10.1002/vms3.665] [Reference Citation Analysis]
17 Mehrotra A, Bhushan B, Kumar A, Panigrahi M, Chauhan A, Kumari S, Saini BL, Dutt T, Mishra BP. Characterisation and comparison of immune response mechanisms in an indigenous and a commercial pig breed after classical swine fever vaccination. Anim Genet 2021. [PMID: 34729794 DOI: 10.1111/age.13152] [Reference Citation Analysis]
18 Liniger M, Gerber M, Renzullo S, García-Nicolás O, Ruggli N. TNF-Mediated Inhibition of Classical Swine Fever Virus Replication Is IRF1-, NF-κB- and JAK/STAT Signaling-Dependent. Viruses 2021;13:2017. [PMID: 34696447 DOI: 10.3390/v13102017] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Bohórquez JA, Defaus S, Rosell R, Pérez-Simó M, Alberch M, Gladue DP, Borca MV, Andreu D, Ganges L. Development of a Dendrimeric Peptide-Based Approach for the Differentiation of Animals Vaccinated with FlagT4G against Classical Swine Fever from Infected Pigs. Viruses 2021;13:1980. [PMID: 34696410 DOI: 10.3390/v13101980] [Reference Citation Analysis]
20 Kim T, Huynh LT, Hirose S, Igarashi M, Hiono T, Isoda N, Sakoda Y. Characteristics of Classical Swine Fever Virus Variants Derived from Live Attenuated GPE- Vaccine Seed. Viruses 2021;13:1672. [PMID: 34452536 DOI: 10.3390/v13081672] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Soldevila F, Edwards JC, Graham SP, Crooke HR, Werling D, Steinbach F. Activation of Dendritic Cells in Tonsils Is Associated with CD8 T Cell Responses following Vaccination with Live Attenuated Classical Swine Fever Virus. Int J Mol Sci 2021;22:8795. [PMID: 34445493 DOI: 10.3390/ijms22168795] [Reference Citation Analysis]
22 Xu Q, Guo J, Ma F, Liu L, Wang Y, Zhang S, Niu X, Li X, Jiang M, Wang Y, Wang L, Liu Y, Li Q, Chai S, Wang R, Ma Q, Zhang E, Zhang G. A novel linear epitope at the C-terminal region of the classical swine fever virus E2 protein elicits neutralizing activity. Int J Biol Macromol 2021;189:837-46. [PMID: 34403672 DOI: 10.1016/j.ijbiomac.2021.08.088] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Liu YY, Liang XD, Liu CC, Cheng Y, Chen H, Baloch AS, Zhang J, Go YY, Zhou B. Fatty Acid Synthase Is Involved in Classical Swine Fever Virus Replication by Interaction with NS4B. J Virol 2021;95:e0078121. [PMID: 34132567 DOI: 10.1128/JVI.00781-21] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
24 Meyer D, Postel A, Wiedemann A, Cagatay GN, Ciulli S, Guercio A, Becher P. Comparative Analysis of Tunisian Sheep-like Virus, Bungowannah Virus and Border Disease Virus Infection in the Porcine Host. Viruses 2021;13:1539. [PMID: 34452404 DOI: 10.3390/v13081539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Wang M, Bohórquez JA, Hinojosa Y, Muñoz-González S, Gerber M, Coronado L, Perera CL, Liniger M, Ruggli N, Ganges L. Abrogation of the RNase activity of Erns in a low virulence classical swine fever virus enhances the humoral immune response and reduces virulence, transmissibility, and persistence in pigs. Virulence 2021;12:2037-49. [PMID: 34339338 DOI: 10.1080/21505594.2021.1959715] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
26 Pang H, Li L, Liu H, Pan Z. Proline to Threonine Mutation at Position 162 of NS5B of Classical Swine Fever Virus Vaccine C Strain Promoted Genome Replication and Infectious Virus Production by Facilitating Initiation of RNA Synthesis. Viruses 2021;13:1523. [PMID: 34452387 DOI: 10.3390/v13081523] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
27 Clemmons EA, Alfson KJ, Dutton JW 3rd. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021;11:2039. [PMID: 34359167 DOI: 10.3390/ani11072039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Nishi T, Fukai K, Kato T, Sawai K, Yamamoto T. Genome variability of classical swine fever virus during the 2018-2020 epidemic in Japan. Vet Microbiol 2021;258:109128. [PMID: 34058522 DOI: 10.1016/j.vetmic.2021.109128] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Lamothe-Reyes Y, Bohórquez JA, Wang M, Alberch M, Pérez-Simó M, Rosell R, Ganges L. Early and Solid Protection Afforded by the Thiverval Vaccine Provides Novel Vaccination Alternatives Against Classical Swine Fever Virus. Vaccines (Basel) 2021;9:464. [PMID: 34066376 DOI: 10.3390/vaccines9050464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Bohórquez JA, Sozzi E, Wang M, Alberch M, Abad X, Gaffuri A, Lelli D, Rosell R, Pérez LJ, Moreno A, Ganges L. The new emerging ovine pestivirus can infect pigs and confers strong protection against classical swine fever virus. Transbound Emerg Dis 2021. [PMID: 33896109 DOI: 10.1111/tbed.14119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
31 Choe S, Kim KS, Shin J, Song S, Park GN, Cha RM, Choi SH, Jung BI, Lee KW, Hyun BH, Park BK, An DJ. Comparative Analysis of the Productivity and Immunogenicity of an Attenuated Classical Swine Fever Vaccine (LOM) and an Attenuated Live Marker Classical Swine Fever Vaccine (Flc-LOM-BErns) from Laboratory to Pig Farm. Vaccines (Basel) 2021;9:381. [PMID: 33924647 DOI: 10.3390/vaccines9040381] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Barman NN, Khatoon E, Bora M, Deori L, Gogoi SM, Kalita D. Investigation of congenital tremor associated with Classical swine fever virus genotype 2.2 in an organized pig farm in north-eastern India. Virusdisease 2021;:1-10. [PMID: 33748346 DOI: 10.1007/s13337-021-00678-3] [Reference Citation Analysis]
33 Wei Q, Liu Y, Zhang G. Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses 2021;13:445. [PMID: 33801868 DOI: 10.3390/v13030445] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
34 Wei Q, Bai Y, Song Y, Liu Y, Yu W, Sun Y, Wang L, Deng R, Xing G, Zhang G. Generation and immunogenicity analysis of recombinant classical swine fever virus glycoprotein E2 and Erns expressed in baculovirus expression system. Virol J 2021;18:44. [PMID: 33627167 DOI: 10.1186/s12985-021-01507-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Bazarragchaa E, Isoda N, Kim T, Tetsuo M, Ito S, Matsuno K, Sakoda Y. Efficacy of Oral Vaccine against Classical Swine Fever in Wild Boar and Estimation of the Disease Dynamics in the Quantitative Approach. Viruses 2021;13:319. [PMID: 33672749 DOI: 10.3390/v13020319] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Sordo-Puga Y, Suárez-Pedroso M, Naranjo-Valdéz P, Pérez-Pérez D, Santana-Rodríguez E, Sardinas-Gonzalez T, Mendez-Orta MK, Duarte-Cano CA, Estrada-Garcia MP, Rodríguez-Moltó MP. Porvac® Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection against Classical Swine Fever Virus. Vaccines (Basel) 2021;9:167. [PMID: 33671399 DOI: 10.3390/vaccines9020167] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
37 Zhao Z, Chen X, Chen Y, Li H, Fang K, Chen H, Li X, Qian P. A Self-Assembling Ferritin Nanoplatform for Designing Classical Swine Fever Vaccine: Elicitation of Potent Neutralizing Antibody. Vaccines (Basel) 2021;9:45. [PMID: 33451123 DOI: 10.3390/vaccines9010045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Blázquez AB, Saiz JC. Potential for Protein Kinase Pharmacological Regulation in Flaviviridae Infections. Int J Mol Sci 2020;21:E9524. [PMID: 33333737 DOI: 10.3390/ijms21249524] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
39 de Oliveira LG, Gatto IRH, Mechler-Dreibi ML, Almeida HMS, Sonálio K, Storino GY. Achievements and Challenges of Classical Swine Fever Eradication in Brazil. Viruses 2020;12:E1327. [PMID: 33227889 DOI: 10.3390/v12111327] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]