BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin J, Wang C, Liang W, Zhang J, Zhang L, Lv H, Dong W, Zhang Y. Rab1A is required for assembly of classical swine fever virus particle. Virology 2018;514:18-29. [PMID: 29128753 DOI: 10.1016/j.virol.2017.11.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Wang T, Liu Y, Sun Y, Zhang L, Guo K, Zhang Y. Rab22a cooperates with Rab5 and NS4B in classical swine fever virus entry process. Veterinary Microbiology 2022;266:109363. [DOI: 10.1016/j.vetmic.2022.109363] [Reference Citation Analysis]
2 Zhang L, Lin J, Weng M, Wen Y, Zhang Y, Deng W. RPLP1, an NS4B-interacting protein, enhances production of CSFV through promoting translation of viral genome. Virulence 2022;13:370-86. [PMID: 35129423 DOI: 10.1080/21505594.2022.2033500] [Reference Citation Analysis]
3 Wang T, Zhang L, Liang W, Liu S, Deng W, Liu Y, Liu Y, Song M, Guo K, Zhang Y. Extracellular vesicles originating from autophagy mediate an antibody-resistant spread of classical swine fever virus in cell culture. Autophagy 2021;:1-17. [PMID: 34740307 DOI: 10.1080/15548627.2021.1987673] [Reference Citation Analysis]
4 Wu K, Fan S, Zou L, Zhao F, Ma S, Fan J, Li X, Zhao M, Yan H, Chen J. Molecular Events Occurring in Lipophagy and Its Regulation in Flaviviridae Infection. Front Microbiol 2021;12:651952. [PMID: 34093468 DOI: 10.3389/fmicb.2021.651952] [Reference Citation Analysis]
5 Fan J, Liao Y, Zhang M, Liu C, Li Z, Li Y, Li X, Wu K, Yi L, Ding H, Zhao M, Fan S, Chen J. Anti-Classical Swine Fever Virus Strategies. Microorganisms 2021;9:761. [PMID: 33917361 DOI: 10.3390/microorganisms9040761] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhang L, Jin M, Song M, Liu S, Wang T, Guo K, Zhang Y. ARFGAP1 binds to classical swine fever virus NS5A protein and enhances CSFV replication in PK-15 cells. Vet Microbiol 2021;255:109034. [PMID: 33721634 DOI: 10.1016/j.vetmic.2021.109034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Saraste J, Prydz K. Assembly and Cellular Exit of Coronaviruses: Hijacking an Unconventional Secretory Pathway from the Pre-Golgi Intermediate Compartment via the Golgi Ribbon to the Extracellular Space. Cells 2021;10:503. [PMID: 33652973 DOI: 10.3390/cells10030503] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
8 Jin T, Yin J. Patterns of virus growth across the diversity of life. Integr Biol (Camb) 2021;13:44-59. [PMID: 33616184 DOI: 10.1093/intbio/zyab001] [Reference Citation Analysis]
9 Zhang L, Zhao D, Jin M, Song M, Liu S, Guo K, Zhang Y. Rab18 binds to classical swine fever virus NS5A and mediates viral replication and assembly in swine umbilical vein endothelial cells. Virulence 2020;11:489-501. [PMID: 32419589 DOI: 10.1080/21505594.2020.1767356] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
10 Xu P, Jia S, Wang K, Fan Z, Zheng H, Lv J, Jiang Y, Hou Y, Lou B, Zhou H, Zhang Y, Guo K. MiR-140 inhibits classical swine fever virus replication by targeting Rab25 in swine umbilical vein endothelial cells. Virulence 2020;11:260-9. [PMID: 32114898 DOI: 10.1080/21505594.2020.1735051] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
11 Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020;289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
12 Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT, Creighton R, Schatzmann Peron JP, Nakaya HI. ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19. J Infect Dis 2020;222:556-63. [PMID: 32526012 DOI: 10.1093/infdis/jiaa332] [Cited by in Crossref: 110] [Cited by in F6Publishing: 120] [Article Influence: 55.0] [Reference Citation Analysis]
13 Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT, Creighton R, Peron JPS, Nakaya HI. ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. medRxiv 2020:2020. [PMID: 32511627 DOI: 10.1101/2020.03.21.20040261] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
14 Gong X, Li X, You X, Hu A, Liu M, Yao H, He J, Zhang X, Ning P. AIF1 was identified as an up-regulated gene contributing to CSFV Shimen infection in porcine alveolar macrophage 3D4/21 cells. PeerJ 2020;8:e8543. [PMID: 32110485 DOI: 10.7717/peerj.8543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Lv H, Dong W, Guo K, Jin M, Li X, Li C, Zhang Y. Tumor Necrosis Factor Receptor-Associated Factor 5 Interacts with the NS3 Protein and Promotes Classical Swine Fever Virus Replication. Viruses 2018;10:E305. [PMID: 29874812 DOI: 10.3390/v10060305] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]