BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Augustine R, Kalva SN, Ahmad R, Zahid AA, Hasan S, Nayeem A, McClements L, Hasan A. 3D Bioprinted cancer models: Revolutionizing personalized cancer therapy. Transl Oncol 2021;14:101015. [PMID: 33493799 DOI: 10.1016/j.tranon.2021.101015] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 39.0] [Reference Citation Analysis]
Number Citing Articles
1 Rousselle A, Ferrandon A, Mathieu E, Godet J, Ball V, Comperat L, Oliveira H, Lavalle P, Vautier D, Arntz Y. Enhancing cell survival in 3D printing of organoids using innovative bioinks loaded with pre-cellularized porous microscaffolds. Bioprinting 2022;28:e00247. [DOI: 10.1016/j.bprint.2022.e00247] [Reference Citation Analysis]
2 Heinrich MA, Heinrich L, Ankone MJ, Vergauwen B, Prakash J. Endotoxin contamination alters macrophage-cancer cell interaction and therapeutic efficacy in pre-clinical 3D in vitro models. Biomaterials Advances 2022. [DOI: 10.1016/j.bioadv.2022.213220] [Reference Citation Analysis]
3 Lourenço D, Lopes R, Pestana C, Queirós AC, João C, Carneiro EA. Patient-Derived Multiple Myeloma 3D Models for Personalized Medicine—Are We There Yet? IJMS 2022;23:12888. [DOI: 10.3390/ijms232112888] [Reference Citation Analysis]
4 Constantinescu T, Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int J Mol Sci 2022;23:11595. [PMID: 36232899 DOI: 10.3390/ijms231911595] [Reference Citation Analysis]
5 Pellegrini E, Desando G, Petretta M, Cellamare A, Cristalli C, Pasello M, Manara MC, Grigolo B, Scotlandi K. A 3D Collagen-Based Bioprinted Model to Study Osteosarcoma Invasiveness and Drug Response. Polymers 2022;14:4070. [DOI: 10.3390/polym14194070] [Reference Citation Analysis]
6 Liu K, Liu R, Wang D, Pan R, Chen H, Jiang D. Spatial Analysis of Reactive Oxygen Species in a 3D Cell Model Using a Sensitive Nanocavity Electrode. Anal Chem . [DOI: 10.1021/acs.analchem.2c03444] [Reference Citation Analysis]
7 Shboul SA, DeLuca VJ, Dweiri YA, Saleh T. Can 3D bioprinting solve the mystery of senescence in cancer therapy? Ageing Res Rev 2022;81:101732. [PMID: 36100069 DOI: 10.1016/j.arr.2022.101732] [Reference Citation Analysis]
8 Singh R, Birru B, Veit JGS, Arrigali EM, Serban MA. Development and Characterization of an In Vitro Round Window Membrane Model for Drug Permeability Evaluations. Pharmaceuticals 2022;15:1105. [DOI: 10.3390/ph15091105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Persaud A, Maus A, Strait L, Zhu D. 3D Bioprinting with Live Cells. Engineered Regeneration 2022;3:292-309. [DOI: 10.1016/j.engreg.2022.07.002] [Reference Citation Analysis]
10 Beheshtizadeh N, Gharibshahian M, Pazhouhnia Z, Rostami M, Zangi AR, Maleki R, Azar HK, Zalouli V, Rajavand H, Farzin A, Lotfibakhshaiesh N, Sefat F, Azami M, Webster TJ, Rezaei N. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomedicine & Pharmacotherapy 2022;153:113431. [DOI: 10.1016/j.biopha.2022.113431] [Reference Citation Analysis]
11 Genta S, Coburn B, Cescon DW, Spreafico A. Patient-derived cancer models: Valuable platforms for anticancer drug testing. Front Oncol 2022;12:976065. [DOI: 10.3389/fonc.2022.976065] [Reference Citation Analysis]
12 Pagnotta G, Kalia S, Di Lisa L, Cicero AF, Borghi C, Focarete ML. Progress towards 3D bioprinting of tissue models for advanced drug screening: In vitro evaluation of drug toxicity and drug metabolism. Bioprinting 2022;27:e00218. [DOI: 10.1016/j.bprint.2022.e00218] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Fernandes S, Vyas C, Lim P, Pereira RF, Virós A, Bártolo P. 3D Bioprinting: An Enabling Technology to Understand Melanoma. Cancers 2022;14:3535. [DOI: 10.3390/cancers14143535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Arjoca S, Robu A, Neagu M, Neagu A. Mathematical and computational models in spheroid-based biofabrication. Acta Biomater 2022:S1742-7061(22)00418-4. [PMID: 35853599 DOI: 10.1016/j.actbio.2022.07.024] [Reference Citation Analysis]
15 Guzzeloni V, Veschini L, Pedica F, Ferrero E, Ferrarini M. 3D Models as a Tool to Assess the Anti-Tumor Efficacy of Therapeutic Antibodies: Advantages and Limitations. Antibodies 2022;11:46. [DOI: 10.3390/antib11030046] [Reference Citation Analysis]
16 Napoli GC, Figg WD, Chau CH. Functional Drug Screening in the Era of Precision Medicine. Front Med 2022;9. [DOI: 10.3389/fmed.2022.912641] [Reference Citation Analysis]
17 Rivero Berti I, Rodenak-kladniew BE, Katz SF, Arrua EC, Alvarez VA, Duran N, Castro GR. Enzymatic Active Release of Violacein Present in Nanostructured Lipid Carrier by Lipase Encapsulated in 3D-Bioprinted Chitosan-Hydroxypropyl Methylcellulose Matrix With Anticancer Activity. Front Chem 2022;10:914126. [DOI: 10.3389/fchem.2022.914126] [Reference Citation Analysis]
18 Staros R, Michalak A, Rusinek K, Mucha K, Pojda Z, Zagożdżon R. Perspectives for 3D-Bioprinting in Modeling of Tumor Immune Evasion. Cancers 2022;14:3126. [DOI: 10.3390/cancers14133126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Quadri M, Marconi A, Sandhu SK, Kiss A, Efimova T, Palazzo E. Investigating Cutaneous Squamous Cell Carcinoma in vitro and in vivo: Novel 3D Tools and Animal Models. Front Med (Lausanne) 2022;9:875517. [PMID: 35646967 DOI: 10.3389/fmed.2022.875517] [Reference Citation Analysis]
20 Ning L, Shim J, Tomov ML, Liu R, Mehta R, Mingee A, Hwang B, Jin L, Mantalaris A, Xu C, Mahmoudi M, Goldsmith KC, Serpooshan V. A 3D Bioprinted in vitro Model of Neuroblastoma Recapitulates Dynamic Tumor-Endothelial Cell Interactions Contributing to Solid Tumor Aggressive Behavior. Adv Sci (Weinh) 2022;:e2200244. [PMID: 35644929 DOI: 10.1002/advs.202200244] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Hasbum A, Karabulut O, Reyes RE, Ricci C, Franchi A, Danti S, Chew SA. Combined Application of Patient-Derived Cells and Biomaterials as 3D In Vitro Tumor Models. Cancers 2022;14:2503. [DOI: 10.3390/cancers14102503] [Reference Citation Analysis]
22 Brooks IR, Garrone CM, Kerins C, Kiar CS, Syntaka S, Xu JZ, Spagnoli FM, Watt FM. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports 2022;17:1033-47. [PMID: 35487213 DOI: 10.1016/j.stemcr.2022.03.019] [Reference Citation Analysis]
23 Antunes N, Kundu B, Kundu SC, Reis RL, Correlo V. In Vitro Cancer Models: A Closer Look at Limitations on Translation. Bioengineering 2022;9:166. [DOI: 10.3390/bioengineering9040166] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Zitzmann FD, Schmidt S, Naumann M, Belder D, Jahnke H, Robitzki AA. Multielectrode biosensor chip for spatial resolution screening of 3D cell models based on microcavity arrays. Biosensors and Bioelectronics 2022;202:114010. [DOI: 10.1016/j.bios.2022.114010] [Reference Citation Analysis]
25 Gupta P, Miller A, Olayanju A, Madhuri TK, Velliou E. A Systematic Comparative Assessment of the Response of Ovarian Cancer Cells to the Chemotherapeutic Cisplatin in 3D Models of Various Structural and Biochemical Configurations-Does One Model Type Fit All? Cancers (Basel) 2022;14:1274. [PMID: 35267582 DOI: 10.3390/cancers14051274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Wieleba I, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Clinical Application Perspectives of Lung Cancers 3D Tumor Microenvironment Models for In Vitro Cultures. Int J Mol Sci 2022;23:2261. [PMID: 35216378 DOI: 10.3390/ijms23042261] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Chae S, Cho D. Three-dimensional bioprinting with decellularized extracellular matrix-based bioinks in translational regenerative medicine. MRS Bulletin. [DOI: 10.1557/s43577-021-00260-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Quinn CH, Beierle AM, Hutchins SC, Marayati R, Bownes LV, Stewart JE, Markert HR, Erwin MH, Aye JM, Yoon KJ, Friedman GK, Willey CD, Markert JM, Beierle EA. Targeting High-Risk Neuroblastoma Patient-Derived Xenografts with Oncolytic Virotherapy. Cancers (Basel) 2022;14:762. [PMID: 35159029 DOI: 10.3390/cancers14030762] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Chaudhary S, Chakraborty E. Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy. Beni Suef Univ J Basic Appl Sci 2022;11:3. [PMID: 35005036 DOI: 10.1186/s43088-021-00172-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
30 Kundu B, Caballero D, Abreu CM, Reis RL, Kundu SC. The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices. Microfluidics and Biosensors in Cancer Research 2022. [DOI: 10.1007/978-3-031-04039-9_5] [Reference Citation Analysis]
31 Sbirkov Y, Molander D, Milet C, Bodurov I, Atanasov B, Penkov R, Belev N, Forraz N, McGuckin C, Sarafian V. A Colorectal Cancer 3D Bioprinting Workflow as a Platform for Disease Modeling and Chemotherapeutic Screening. Front Bioeng Biotechnol 2021;9:755563. [PMID: 34869264 DOI: 10.3389/fbioe.2021.755563] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Paradiso F, Serpelloni S, Francis LW, Taraballi F. Mechanical Studies of the Third Dimension in Cancer: From 2D to 3D Model. Int J Mol Sci 2021;22:10098. [PMID: 34576261 DOI: 10.3390/ijms221810098] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
33 Kim J, Jang J, Cho DW. Recapitulating the Cancer Microenvironment Using Bioprinting Technology for Precision Medicine. Micromachines (Basel) 2021;12:1122. [PMID: 34577765 DOI: 10.3390/mi12091122] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Choi JY, Mahadik B, Fisher JP. 3D printing technologies for in vitro vaccine testing platforms and vaccine delivery systems against infectious diseases. Essays Biochem 2021;65:519-31. [PMID: 34342360 DOI: 10.1042/EBC20200105] [Reference Citation Analysis]
35 Augustine R, Mamun AA, Hasan A, Salam SA, Chandrasekaran R, Ahmed R, Thakor AS. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv Colloid Interface Sci 2021;294:102457. [PMID: 34144344 DOI: 10.1016/j.cis.2021.102457] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
36 Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021;13:3651. [PMID: 34359553 DOI: 10.3390/cancers13153651] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
37 Kronemberger GS, Miranda GASC, Tavares RSN, Montenegro B, Kopke ÚA, Baptista LS. Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Front Bioeng Biotechnol 2021;9:682498. [PMID: 34239860 DOI: 10.3389/fbioe.2021.682498] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
38 Zaszczyńska A, Moczulska-Heljak M, Gradys A, Sajkiewicz P. Advances in 3D Printing for Tissue Engineering. Materials (Basel) 2021;14:3149. [PMID: 34201163 DOI: 10.3390/ma14123149] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
39 Sbrana FV, Pinos R, Barbaglio F, Ribezzi D, Scagnoli F, Scarfò L, Redwan IN, Martinez H, Farè S, Ghia P, Scielzo C. 3D Bioprinting Allows the Establishment of Long-Term 3D Culture Model for Chronic Lymphocytic Leukemia Cells. Front Immunol 2021;12:639572. [PMID: 34012434 DOI: 10.3389/fimmu.2021.639572] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
40 Augustine R, Aqel AH, Kalva SN, Joshy KS, Nayeem A, Hasan A. Bioengineered microfluidic blood-brain barrier models in oncology research. Transl Oncol 2021;14:101087. [PMID: 33865030 DOI: 10.1016/j.tranon.2021.101087] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
41 Quinn CH, Beierle AM, Beierle EA. Artificial Tumor Microenvironments in Neuroblastoma. Cancers (Basel) 2021;13:1629. [PMID: 33915765 DOI: 10.3390/cancers13071629] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]