BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tong C, Shi F, Tong X, Shi S, Ali I, Guo Y. Shining natural flavonols in sensing and bioimaging. TrAC Trends in Analytical Chemistry 2021;137:116222. [DOI: 10.1016/j.trac.2021.116222] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Li M, Wang D, Peng C, Wang Z. Simultaneous qualitative and quantitative analysis of flavonols in Kaempferia galangal L. and honey by machine learning-based fluorescence sensor array. Sensors and Actuators B: Chemical 2023;378:133183. [DOI: 10.1016/j.snb.2022.133183] [Reference Citation Analysis]
2 Ge M, Liu S, Li J, Li M, Li S, James TD, Chen Z. Luminescent materials derived from biomass resources. Coordination Chemistry Reviews 2023;477:214951. [DOI: 10.1016/j.ccr.2022.214951] [Reference Citation Analysis]
3 Wu Y, Meng Z, Zhao F, Wang S, Wang Z, Yang Y. An efficient ethylcellulose fluorescent probe for rapid detection of Fe3+ and its multi-functional applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023;284:121767. [DOI: 10.1016/j.saa.2022.121767] [Reference Citation Analysis]
4 Yan Q, Wang Y, Wang Z, Zhang G, Shi D, Xu H. A novel water-soluble flavonol-based fluorescent probe for highly specific and sensitive detection of Al3+ and its application in onion and zebrafish. Spectrochim Acta A Mol Biomol Spectrosc 2022;279:121384. [PMID: 35636134 DOI: 10.1016/j.saa.2022.121384] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Cai X, Zhang X, Lin Y, Tang Z, Huang S. Two distinctly fluorescent BioAIEgens originated from the combination of natural rosin and chromophoric triphenylamine. Journal of Molecular Structure 2022. [DOI: 10.1016/j.molstruc.2022.134230] [Reference Citation Analysis]
6 Zhang Q, Tian F, Meng F, Zhang L, Jiang L, Tang S, Lv N, Bao L. Nitrogen-doped quantum dots as high-efficiency nanoprobes for vanillin detection in complex samples and cell imaging applications. Optical Materials 2022;131:112743. [DOI: 10.1016/j.optmat.2022.112743] [Reference Citation Analysis]
7 Liu D, Zhao Z, Tang BZ. Natural products with aggregation-induced emission properties: from discovery to their multifunctional applications. Sci Sin -Chim 2022;52:1524-1546. [DOI: 10.1360/ssc-2022-0082] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Yan Q, Meng T, Luo W, Sun L, Zeng Q, Xu H. Co-assembly Behaviors of Flavonol Derivatives Induced by a Pyridine Derivative on HOPG via Hydrogen Bonding and Van der Waals Forces. Langmuir 2022. [PMID: 35797253 DOI: 10.1021/acs.langmuir.2c01076] [Reference Citation Analysis]
9 Li Y, Xiao D, Li S, Chen Z, Liu S, Li J. Silver@quercetin Nanoparticles with Aggregation-Induced Emission for Bioimaging In Vitro and In Vivo. IJMS 2022;23:7413. [DOI: 10.3390/ijms23137413] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Fan L, Tong C, Cao Y, Long R, Wei Q, Wang F, Tong X, Shi S, Guo Y. Highly specific esterase activated AIE plus ESIPT probe for sensitive ratiometric detection of carbaryl. Talanta 2022;246:123517. [PMID: 35523022 DOI: 10.1016/j.talanta.2022.123517] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Tong C, Cai G, Wei Q, Cao Y, Chen Y, Shi S. Highly specific β‑glucuronidase light-up natural fluorescent probe with aggregation-induced emission and excited-state intramolecular proton transfer for inhibitors screening and in situ imaging in Escherichia coli. Microchemical Journal 2022;174:107104. [DOI: 10.1016/j.microc.2021.107104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Khani S, Mohajer F, Mohammadi Ziarani G, Badiei A, Ghasemi JB. Using the extract of pomegranate peel as a natural indicator for colorimetric detection and simultaneous determination of Fe 3+ and Fe 2+ by partial least squares–artificial neural network. Journal of Chemometrics. [DOI: 10.1002/cem.3390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhou P, Han K. ESIPT‐based AIE luminogens: Design strategies, applications, and mechanisms. Aggregate. [DOI: 10.1002/agt2.160] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
14 Long R, Tang C, Wei Q, Tong C, Tong X, Shi S, Guo Y, Yang Y. Unprecedented natural mangiferin excimer induced aggregation-induced emission luminogens for highly selective bioimaging of cancer cells. Sensors and Actuators B: Chemical 2021;348:130666. [DOI: 10.1016/j.snb.2021.130666] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Prutskij T, Deriabina A, Melendez FJ, Castro ME, Castillo Trejo L, Vazquez Leon GD, Gonzalez E, Perova TS. Concentration-Dependent Fluorescence Emission of Quercetin. Chemosensors 2021;9:315. [DOI: 10.3390/chemosensors9110315] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]