BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fu L, Wang Y. Detection methods and applications of microfluidic paper-based analytical devices. TrAC Trends in Analytical Chemistry 2018;107:196-211. [DOI: 10.1016/j.trac.2018.08.018] [Cited by in Crossref: 144] [Cited by in F6Publishing: 154] [Article Influence: 28.8] [Reference Citation Analysis]
Number Citing Articles
1 Aghababaie M, Foroushani ES, Changani Z, Gunani Z, Mobarakeh MS, Hadady H, Khedri M, Maleki R, Asadnia M, Razmjou A. Recent Advances In the development of enzymatic paper-based microfluidic biosensors. Biosens Bioelectron 2023;226:115131. [PMID: 36804663 DOI: 10.1016/j.bios.2023.115131] [Reference Citation Analysis]
2 Duan S, Cai T, Zhu J, Yang X, Lim EG, Huang K, Hoettges K, Zhang Q, Fu H, Guo Q, Liu X, Yang Z, Song P. Deep learning-assisted ultra-accurate smartphone testing of paper-based colorimetric ELISA assays. Anal Chim Acta 2023;1248:340868. [PMID: 36813452 DOI: 10.1016/j.aca.2023.340868] [Reference Citation Analysis]
3 Assi N, Rypar T, Macka M, Adam V, Vaculovicova M. Microfluidic paper-based fluorescence sensor for L-homocysteine using a molecularly imprinted polymer and in situ-formed fluorescent quantum dots. Talanta 2023;255:124185. [PMID: 36634429 DOI: 10.1016/j.talanta.2022.124185] [Reference Citation Analysis]
4 Rink S, Duerkop A, Baeumner AJ. Enhanced Chemiluminescence of a Superior Luminol Derivative Provides Sensitive Smartphone‐Based Point‐of‐Care Testing with Enzymatic μPAD. Analysis & Sensing 2023. [DOI: 10.1002/anse.202200111] [Reference Citation Analysis]
5 Kakkar S, Gupta P, Kumar N, Kant K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. Biosensors (Basel) 2023;13. [PMID: 36832016 DOI: 10.3390/bios13020249] [Reference Citation Analysis]
6 Chen L, Ghiasvand A, Paull B. Applications of thread-based microfluidics: Approaches and options for detection. TrAC Trends in Analytical Chemistry 2023. [DOI: 10.1016/j.trac.2023.117001] [Reference Citation Analysis]
7 Kilic T, Ghoreishizadeh SS, Carrara S. CMOS-based microanalysis systems. Microfluidic Biosensors 2023. [DOI: 10.1016/b978-0-12-823846-2.00006-7] [Reference Citation Analysis]
8 Sousa LR, Silva-neto HA, Moreira NS, Guinati BG, Coltro WK. Sensing Materials: Paper Substrates. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00055-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Pusta A, Casian M, Hosu O, Tertis M, Cristea C. Microdevice-based aptamer sensors. Aptamers Engineered Nanocarriers for Cancer Therapy 2023. [DOI: 10.1016/b978-0-323-85881-6.00006-3] [Reference Citation Analysis]
10 Mesquita P, Gong L, Lin Y. Low-cost microfluidics: Towards affordable environmental monitoring and assessment. Front Lab Chip Technol 2022;1. [DOI: 10.3389/frlct.2022.1074009] [Reference Citation Analysis]
11 Martínez-pérez-cejuela H, Mesquita RB, Couto JA, Simó-alfonso E, Herrero-martínez J, Rangel AOS. Design of a microfluidic paper-based device for the quantification of phenolic compounds in wine samples. Talanta 2022;250:123747. [DOI: 10.1016/j.talanta.2022.123747] [Reference Citation Analysis]
12 Dinh DMT, Le NN, Lam PH, Thi Le AV, Thi Le M, Thi Dang DM, Thi Nguyen H, Dang CM. Effects of pulse voltage on the droplet formation of glycol ethers solvent ink in a piezoelectric inkjet printing process for fabricating hydrophobic lines on paper substrate. Adv Nat Sci: Nanosci Nanotechnol 2022;13:045011. [DOI: 10.1088/2043-6262/aca0ee] [Reference Citation Analysis]
13 Shalaby AA, Tsao C, Ishida A, Maeki M, Tokeshi M. Microfluidic Paper-Based Analytical Devices for Cancer Diagnosis. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.133243] [Reference Citation Analysis]
14 Aguiar JI, Silva MT, Ferreira HA, Pinto EC, Vasconcelos MW, Rangel AO, Mesquita RB. Development of a microfluidic paper-based analytical device for magnesium determination in saliva samples. Talanta Open 2022;6:100135. [DOI: 10.1016/j.talo.2022.100135] [Reference Citation Analysis]
15 Wang J, Davidson JL, Kaur S, Dextre AA, Ranjbaran M, Kamel MS, Athalye SM, Verma MS. Paper-Based Biosensors for the Detection of Nucleic Acids from Pathogens. Biosensors (Basel) 2022;12. [PMID: 36551061 DOI: 10.3390/bios12121094] [Reference Citation Analysis]
16 El Hani O, Karrat A, Digua K, Amine A. Advanced molecularly imprinted polymer-based paper analytical device for selective and sensitive detection of Bisphenol-A in water samples. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.108157] [Reference Citation Analysis]
17 Yuan H, Chen P, Wan C, Li Y, Liu B. Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116814] [Reference Citation Analysis]
18 Heidary O, Akhond M, Hemmateenejad B. A microfluidic paper-based analytical device for iodometric titration of ascorbic acid and dopamine. Microchemical Journal 2022;182:107886. [DOI: 10.1016/j.microc.2022.107886] [Reference Citation Analysis]
19 Ghasemi F, Fahimi-kashani N, Bigdeli A, Alshatteri AH, Abbasi-moayed S, Al-jaf SH, Merry MY, Omer KM, Hormozi-nezhad MR. Paper-based optical nanosensors – A review. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340640] [Reference Citation Analysis]
20 Li P, Xiong H, Yang B, Jiang X, Kong J, Fang X. Recent progress in CRISPR-based microfluidic assays and applications. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116812] [Reference Citation Analysis]
21 Rai PK, Islam M, Gupta A. Microfluidic devices for the detection of contamination in water samples: A review. Sensors and Actuators A: Physical 2022;347:113926. [DOI: 10.1016/j.sna.2022.113926] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Jin Y, Aziz AUR, Wu B, Lv Y, Zhang H, Li N, Liu B, Zhang Z. The Road to Unconventional Detections: Paper-Based Microfluidic Chips. Micromachines 2022;13:1835. [DOI: 10.3390/mi13111835] [Reference Citation Analysis]
23 Xie Y, Li H, Chen F, Udayakumar S, Arora K, Chen H, Lan Y, Hu Q, Zhou X, Guo X, Xiu L, Yin K. Clustered Regularly Interspaced short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. Adv Sci (Weinh) 2022;9:e2204172. [PMID: 36257813 DOI: 10.1002/advs.202204172] [Reference Citation Analysis]
24 Nie R, He H, Lu P, Peng X, Li X, Chen Y. A homogeneous microchannel resistance sensor based on target-induced aggregation of polystyrene microspheres. Sensors and Actuators B: Chemical 2022;369:132277. [DOI: 10.1016/j.snb.2022.132277] [Reference Citation Analysis]
25 Sun K, Xu F, Liu J, Zhang Y, Fan Y. Low-cost and Rapid Fabrication of Paper-based Microfluidic Devices with Stencil Film. Chem Lett 2022;51:844-7. [DOI: 10.1246/cl.220164] [Reference Citation Analysis]
26 Shrestha S, Pudasaini S, Giri B. Towards the development of paper analytical devices for testing alkaline phosphatase, starch, and urea in milk. International Dairy Journal 2022. [DOI: 10.1016/j.idairyj.2022.105470] [Reference Citation Analysis]
27 Oliveira ACM, Araújo DAG, Pradela-Filho LA, Takeuchi RM, Trindade MAG, Dos Santos AL. Threads in tubing: an innovative approach towards improved electrochemical thread-based microfluidic devices. Lab Chip 2022. [PMID: 35833547 DOI: 10.1039/d2lc00387b] [Reference Citation Analysis]
28 Alidoust M, Yamini Y, Baharfar M. Microfluidic paper-based analytical devices and electromembrane extraction; Hyphenation of fields towards effective analytical platforms. Analytica Chimica Acta 2022;1216:339987. [DOI: 10.1016/j.aca.2022.339987] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Manessis G, Gelasakis AI, Bossis I. Point-of-Care Diagnostics for Farm Animal Diseases: From Biosensors to Integrated Lab-on-Chip Devices. Biosensors 2022;12:455. [DOI: 10.3390/bios12070455] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Zea M, Moya A, Villa R, Gabriel G. Reliable Paper Surface Treatments for the Development of Inkjet‐Printed Electrochemical Sensors. Adv Materials Inter. [DOI: 10.1002/admi.202200371] [Reference Citation Analysis]
31 Budlayan ML, Lagare-oracion JP, Patricio J, De La Rosa L, Arco S, Alguno A, Manigo J, Capangpangan R. Single-dip colorimetric detection of cyanide using paper-based analytic device based on immobilized silver nanoparticles. Int Nano Lett. [DOI: 10.1007/s40089-022-00373-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Bordbar MM, Samadinia H, Sheini A, Aboonajmi J, Sharghi H, Hashemi P, Khoshsafar H, Ghanei M, Bagheri H. A colorimetric electronic tongue for point-of-care detection of COVID-19 using salivary metabolites. Talanta 2022;246:123537. [PMID: 35597231 DOI: 10.1016/j.talanta.2022.123537] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
33 Pagkali V, Soulis D, Kokkinos C, Economou A. Fully drawn electrochemical paper-based glucose biosensors fabricated by a high-throughput dual-step pen-on-paper approach with commercial writing stationery. Sensors and Actuators B: Chemical 2022;358:131546. [DOI: 10.1016/j.snb.2022.131546] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 González del Campo MM, Vaquer A, de la Rica R. Polymer Components for Paper‐Based Analytical Devices. Adv Materials Technologies. [DOI: 10.1002/admt.202200140] [Reference Citation Analysis]
35 Das S, Gagandeep, Bhatia R. Paper-based microfluidic devices: Fabrication, detection, and significant applications in various fields. Reviews in Analytical Chemistry 2022;41:112-36. [DOI: 10.1515/revac-2022-0037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
36 Tseng C, Lu S, Chen S, Wang J, Fu L, Wu Y. Microfluidic aptasensor POC device for determination of whole blood potassium. Analytica Chimica Acta 2022;1203:339722. [DOI: 10.1016/j.aca.2022.339722] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Thakur A, Devi P. Paper-based flexible devices for energy harvesting, conversion and storage applications: A review. Nano Energy 2022;94:106927. [DOI: 10.1016/j.nanoen.2022.106927] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
38 Charernchai S, Chikae M, Phan TT, Wonsawat W, Hirose D, Takamura Y. Automated Paper-Based Femtogram Sensing Device for Competitive Enzyme-Linked Immunosorbent Assay of Aflatoxin B(1) Using Submicroliter Samples. Anal Chem 2022;94:5099-105. [PMID: 35302345 DOI: 10.1021/acs.analchem.1c05401] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
39 Shariati S, Khayatian G. A new method for selective determination of creatinine using smartphone-based digital image. Microfluid Nanofluid 2022;26. [DOI: 10.1007/s10404-022-02538-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Hassanzadeh J, Al Lawati HAJ, Bagheri N. On paper synthesis of multifunctional CeO2 nanoparticles@Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose. Biosens Bioelectron 2022;207:114184. [PMID: 35339073 DOI: 10.1016/j.bios.2022.114184] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
41 Park C, Lee J, Lee D, Jang J. Paper-based electrochemical peptide sensor for label-free and rapid detection of airborne Bacillus anthracis simulant spores. Sensors and Actuators B: Chemical 2022;355:131321. [DOI: 10.1016/j.snb.2021.131321] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Silva R, Ahamed A, Cheong YH, Zhao K, Ding R, Lisak G. Non-equilibrium potentiometric sensors integrated with metal modified paper-based microfluidic solution sampling substrates for determination of heavy metals in complex environmental samples. Analytica Chimica Acta 2022;1197:339495. [DOI: 10.1016/j.aca.2022.339495] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
43 El Hani O, Karrat A, Digua K, Amine A. Development of a simplified spectrophotometric method for nitrite determination in water samples. Spectrochim Acta A Mol Biomol Spectrosc 2022;267:120574. [PMID: 34772633 DOI: 10.1016/j.saa.2021.120574] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
44 Guimarães F. Júnior J, Roberto Barbosa de Lima A, John Duarte de Freitas A, Duarte de Freitas J, Rodrigues Limad P, Caxico de Abreu F, Meneses D. Paper based device (PAD) for colorimetric determination of ranitidine in Pharmaceutical Samples. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107336] [Reference Citation Analysis]
45 Tang X, Su R, Luo H, Zhao Y, Feng L, Chen J. Colorimetric detection of Aflatoxin B1 by using smartphone-assisted microfluidic paper-based analytical devices. Food Control 2022;132:108497. [DOI: 10.1016/j.foodcont.2021.108497] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
46 Wang L, Li B, Wang J, Qi J, Li J, Ma J, Chen L. A rotary multi-positioned cloth/paper hybrid microfluidic device for simultaneous fluorescence sensing of mercury and lead ions by using ion imprinted technologies. J Hazard Mater 2022;428:128165. [PMID: 35007967 DOI: 10.1016/j.jhazmat.2021.128165] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
47 Chen K, Liu C, Lu S, Chen S, Sheu F, Fu L. Rapid microfluidic analysis detection system for sodium dehydroacetate in foods. Chemical Engineering Journal 2022;427:131530. [DOI: 10.1016/j.cej.2021.131530] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
48 Wang L, Li B, Li J, Qi J, Zhang Z, Chen L. An ion imprinting technology-assisted rotational microfluidic hybrid chip for the fluorescence detection of hexavalent chromium ions. Analyst 2022;147:3756-3763. [DOI: 10.1039/d2an00896c] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022;51:9009-9067. [DOI: 10.1039/d2cs00613h] [Reference Citation Analysis]
50 Zhang Y, Liu Y. Advances in integrated digital microfluidic platforms for point-of-care diagnosis: a review. Sens Diagn 2022;1:648-672. [DOI: 10.1039/d2sd00031h] [Reference Citation Analysis]
51 Krishnamurthy A, Anand RK. Recent advances in microscale extraction driven by ion concentration polarization. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116537] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Silva-neto HA, Sousa LR, Coltro WK. Colorimetric paper-based analytical devices. Paper-based Analytical Devices for Chemical Analysis and Diagnostics 2022. [DOI: 10.1016/b978-0-12-820534-1.00009-8] [Reference Citation Analysis]
53 Alahmad W, Sahragard A, Varanusupakul P. Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical and biochemical analysis: A review. Biosens Bioelectron 2021;194:113574. [PMID: 34474275 DOI: 10.1016/j.bios.2021.113574] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
54 Khanal B, Pokhrel P, Khanal B, Giri B. Machine-Learning-Assisted Analysis of Colorimetric Assays on Paper Analytical Devices. ACS Omega 2021;6:33837-45. [PMID: 34926930 DOI: 10.1021/acsomega.1c05086] [Reference Citation Analysis]
55 Liu C, Ko C, Wang Y, Fu L, Lee S. Rapid detection of artificial sweeteners in food using microfluidic chromatography detection system. Chemical Engineering Journal 2021;425:131528. [DOI: 10.1016/j.cej.2021.131528] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
56 Xu Y, Wang T, Chen Z, Jin L, Wu Z, Yan J, Zhao X, Cai L, Deng Y, Guo Y, Li S, He N. The point-of-care-testing of nucleic acids by chip, cartridge and paper sensors. Chinese Chemical Letters 2021;32:3675-86. [DOI: 10.1016/j.cclet.2021.06.025] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
57 Ortiz-martínez M, Flores-delatoba R, González-gonzález M, Rito-palomares M. Current Challenges and Future Trends of Enzymatic Paper-Based Point-of-Care Testing for Diabetes Mellitus Type 2. Biosensors 2021;11:482. [DOI: 10.3390/bios11120482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
58 Alahmad W, Sahragard A, Varanusupakul P. An overview of the recent developments of microfluidic paper-based analytical devices for the detection of chromium species. Microchemical Journal 2021;170:106699. [DOI: 10.1016/j.microc.2021.106699] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
59 Zhu Y, Tong X, Wei Q, Cai G, Cao Y, Tong C, Shi S, Wang F. 3D origami paper-based ratiometric fluorescent microfluidic device for visual point-of-care detection of alkaline phosphatase and butyrylcholinesterase. Biosens Bioelectron 2021;196:113691. [PMID: 34637993 DOI: 10.1016/j.bios.2021.113691] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
60 Musile G, Agard Y, Wang L, De Palo EF, Mccord B, Tagliaro F. Paper-based microfluidic devices: On-site tools for crime scene investigation. TrAC Trends in Analytical Chemistry 2021;143:116406. [DOI: 10.1016/j.trac.2021.116406] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
61 Mukhopadhyay M, Subramanian SG, Durga KV, Sarkar D, Dasgupta S. Design, Fabrication, and Theoretical Investigation of a Cost-Effective Laser Printing Based Colorimetric Paper Sensor for Non-Invasive Glucose and Ketone Detection.. [DOI: 10.1101/2021.09.23.461386] [Reference Citation Analysis]
62 Tseng C, Kung C, Chen R, Tsai M, Chao H, Wang Y, Fu L. Recent advances in microfluidic paper-based assay devices for diagnosis of human diseases using saliva, tears and sweat samples. Sensors and Actuators B: Chemical 2021;342:130078. [DOI: 10.1016/j.snb.2021.130078] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
63 Tseng C, Chen S, Lu S, Ko C, Wang J, Fu L, Liu Y. Novel sliding hybrid microchip detection system for determination of whole blood phosphorus concentration. Chemical Engineering Journal 2021;419:129592. [DOI: 10.1016/j.cej.2021.129592] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
64 Lima LFD, Moraes ADS, Garcia PDT, de Araujo WR. Lab on a Paper‐Based Device for Coronavirus Biosensing. Detection and Analysis of SARS Coronavirus 2021. [DOI: 10.1002/9783527832521.ch9] [Reference Citation Analysis]
65 Laurenciano CJD, Tseng CC, Chen SJ, Lu SY, Tayo LL, Fu LM. Microfluidic colorimetric detection platform with sliding hybrid PMMA/paper microchip for human urine and blood sample analysis. Talanta 2021;231:122362. [PMID: 33965028 DOI: 10.1016/j.talanta.2021.122362] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
66 Lewińska I, Speichert M, Granica M, Tymecki Ł. Colorimetric point-of-care paper-based sensors for urinary creatinine with smartphone readout. Sensors and Actuators B: Chemical 2021;340:129915. [DOI: 10.1016/j.snb.2021.129915] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
67 Pagkali V, Stavra E, Soulis D, Economou A. Development of a High-Throughput Low-Cost Approach for Fabricating Fully Drawn Paper-Based Analytical Devices Using Commercial Writing Tools. Chemosensors 2021;9:178. [DOI: 10.3390/chemosensors9070178] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
68 McConnell EM, Cozma I, Mou Q, Brennan JD, Lu Y, Li Y. Biosensing with DNAzymes. Chem Soc Rev 2021;50:8954-94. [PMID: 34227631 DOI: 10.1039/d1cs00240f] [Cited by in Crossref: 46] [Cited by in F6Publishing: 56] [Article Influence: 23.0] [Reference Citation Analysis]
69 Zheng X, Zhang F, Wang K, Zhang W, Li Y, Sun Y, Sun X, Li C, Dong B, Wang L, Xu L. Smart biosensors and intelligent devices for salivary biomarker detection. TrAC Trends in Analytical Chemistry 2021;140:116281. [DOI: 10.1016/j.trac.2021.116281] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
70 Al Lawati HAJ, Hassanzadeh J, Bagheri N, Al Lawati I. On paper synthesis of metal-organic framework as a chemiluminescence enhancer for estimating the total phenolic content of food samples using a smartphone readout. Talanta 2021;234:122648. [PMID: 34364457 DOI: 10.1016/j.talanta.2021.122648] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
71 Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. Lab Chip 2021;21:1433-53. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
72 Noviana E, Ozer T, Carrell CS, Link JS, Mcmahon C, Jang I, Henry CS. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem Rev 2021;121:11835-85. [DOI: 10.1021/acs.chemrev.0c01335] [Cited by in Crossref: 66] [Cited by in F6Publishing: 91] [Article Influence: 33.0] [Reference Citation Analysis]
73 Torul H, Gumustas M, Urguplu B, Uzunoglu A, Boyaci IH, Celikkan H, Tamer U. Disposable electrochemical flow cell with paper-based electrode assemble. Journal of Electroanalytical Chemistry 2021;891:115268. [DOI: 10.1016/j.jelechem.2021.115268] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
74 Puiu M, Mirceski V, Bala C. Paper-based diagnostic platforms and devices. Current Opinion in Electrochemistry 2021;27:100726. [DOI: 10.1016/j.coelec.2021.100726] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
75 Sivakumar R, Lee NY. Paper-Based Fluorescence Chemosensors for Metal Ion Detection in Biological and Environmental Samples. BioChip J 2021;15:216-32. [DOI: 10.1007/s13206-021-00026-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
76 Benedé JL, Chisvert A, Lucena R, Cárdenas S. Synergistic combination of polyamide-coated paper-based sorptive phase for the extraction of antibiotics in saliva. Anal Chim Acta 2021;1164:338512. [PMID: 33992212 DOI: 10.1016/j.aca.2021.338512] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
77 Le NN, Phan HCT, Dang DMT, Dang CM. Fabrication of Miniaturized Microfluidic Paper-Based Analytical Devices for Sandwich Enzyme-Linked Immunosorbent Assays using INKJET Printing. Appl Biochem Microbiol 2021;57:257-61. [DOI: 10.1134/s0003683821020071] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
78 Chen J, Chen X, Wang P, Liu S, Chi Z. Aggregation-induced emission luminogen@manganese dioxide core-shell nanomaterial-based paper analytical device for equipment-free and visual detection of organophosphorus pesticide. J Hazard Mater 2021;413:125306. [PMID: 33588332 DOI: 10.1016/j.jhazmat.2021.125306] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 7.5] [Reference Citation Analysis]
79 Wang R, Wang X. Sensing of inorganic ions in microfluidic devices. Sensors and Actuators B: Chemical 2021;329:129171. [DOI: 10.1016/j.snb.2020.129171] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
80 Li W, Zhang X, Li T, Ji Y, Li R. Molecularly imprinted polymer-enhanced biomimetic paper-based analytical devices: A review. Anal Chim Acta 2021;1148:238196. [PMID: 33516379 DOI: 10.1016/j.aca.2020.12.071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
81 Ko CH, Liu CC, Chen KH, Sheu F, Fu LM, Chen SJ. Microfluidic colorimetric analysis system for sodium benzoate detection in foods. Food Chem 2021;345:128773. [PMID: 33302108 DOI: 10.1016/j.foodchem.2020.128773] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
82 Fernandes GM, de Sousa J, da Silveira Petruci JF, Batista AD. Paper-based analytical device for colorimetric detection of Cu2+ in Brazilian sugarcane spirits by digital image treatment. Microchemical Journal 2020;159:105463. [DOI: 10.1016/j.microc.2020.105463] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
83 Krikstolaityte V, Ding R, Chua Hui Xia E, Lisak G. Paper as sampling substrates and all-integrating platforms in potentiometric ion determination. TrAC Trends in Analytical Chemistry 2020;133:116070. [DOI: 10.1016/j.trac.2020.116070] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
84 Bastos-soares EA, Sousa RMO, Gómez AF, Alfonso J, Kayano AM, Zanchi FB, Funes-huacca ME, Stábeli RG, Soares AM, Pereira SS, Fernandes CFC. Single domain antibodies in the development of immunosensors for diagnostics. International Journal of Biological Macromolecules 2020;165:2244-52. [DOI: 10.1016/j.ijbiomac.2020.10.031] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
85 Qi J, Fan X, Deng D, He H, Luo L. Progress in Rapid Detection Techniques Using Paper-Based Platforms for Food Safety. Chinese Journal of Analytical Chemistry 2020;48:1616-24. [DOI: 10.1016/s1872-2040(20)60064-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
86 Kung C, Gao H, Lee C, Wang Y, Dong W, Ko C, Wang G, Fu L. Microfluidic synthesis control technology and its application in drug delivery, bioimaging, biosensing, environmental analysis and cell analysis. Chemical Engineering Journal 2020;399:125748. [DOI: 10.1016/j.cej.2020.125748] [Cited by in Crossref: 43] [Cited by in F6Publishing: 30] [Article Influence: 14.3] [Reference Citation Analysis]
87 Abdulsattar JO, Hadi H, Richardson S, Iles A, Pamme N. Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs). Analytica Chimica Acta 2020;1136:196-204. [DOI: 10.1016/j.aca.2020.09.045] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
88 Fernandes GM, Silva WR, Barreto DN, Lamarca RS, Lima Gomes PCF, Flávio da S Petruci J, Batista AD. Novel approaches for colorimetric measurements in analytical chemistry - A review. Anal Chim Acta 2020;1135:187-203. [PMID: 33070854 DOI: 10.1016/j.aca.2020.07.030] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 20.0] [Reference Citation Analysis]
89 Ming T, Luo J, Liu J, Sun S, Xing Y, Wang H, Xiao G, Deng Y, Cheng Y, Yang Z, Jin H, Cai X. Paper-based microfluidic aptasensors. Biosens Bioelectron 2020;170:112649. [PMID: 33022516 DOI: 10.1016/j.bios.2020.112649] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
90 Hou C, Fu L, Ju W, Wu P. Microfluidic colorimetric system for nitrite detection in foods. Chemical Engineering Journal 2020;398:125573. [DOI: 10.1016/j.cej.2020.125573] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
91 Climent E, Biyikal M, Gröninger D, Weller MG, Martínez‐máñez R, Rurack K. Multiplex‐Nachweis von Analyten auf einem einzelnen Teststreifen mit Antikörper‐gesteuerten und Indikator freisetzenden mesoporösen Nanopartikeln. Angew Chem 2020;132:24071-8. [DOI: 10.1002/ange.202009000] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
92 Huang L, Wang J, Wang Q, Tang D, Lin Y. Distance-dependent visual fluorescence immunoassay on CdTe quantum dot-impregnated paper through silver ion-exchange reaction. Mikrochim Acta 2020;187:563. [PMID: 32920713 DOI: 10.1007/s00604-020-04546-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
93 Al Yahyai I, Al-Lawati HAJ. A review of recent developments based on chemiluminescence detection systems for pesticides analysis. Luminescence 2021;36:266-77. [PMID: 32909300 DOI: 10.1002/bio.3947] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
94 Wu Y, Yang C, Ko C, Wang Y, Liu C, Fu L. Microfluidic detection platform with integrated micro-spectrometer system. Chemical Engineering Journal 2020;393:124700. [DOI: 10.1016/j.cej.2020.124700] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
95 Ortiz-Gomez I, Ortega-Muñoz M, Marín-Sánchez A, de Orbe-Payá I, Hernandez-Mateo F, Capitan-Vallvey LF, Santoyo-Gonzalez F, Salinas-Castillo A. A vinyl sulfone clicked carbon dot-engineered microfluidic paper-based analytical device for fluorometric determination of biothiols. Mikrochim Acta 2020;187:421. [PMID: 32617684 DOI: 10.1007/s00604-020-04382-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
96 Noviana E, Carrão DB, Pratiwi R, Henry CS. Emerging applications of paper-based analytical devices for drug analysis: A review. Analytica Chimica Acta 2020;1116:70-90. [DOI: 10.1016/j.aca.2020.03.013] [Cited by in Crossref: 66] [Cited by in F6Publishing: 71] [Article Influence: 22.0] [Reference Citation Analysis]
97 Colozza N, Sassolini A, Agosta L, Bonfanti A, Hermansson K, Arduini F. A Paper‐Based Potentiometric Sensor for Solid Samples: Corrosion Evaluation of Reinforcements Embedded in Concrete Structures as a Case Study. ChemElectroChem 2020;7:2274-82. [DOI: 10.1002/celc.202000330] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
98 Fernández-Ramos MD, Ogunneye AL, Babarinde NAA, Erenas MM, Capitán-Vallvey LF. Bioactive microfluidic paper device for pesticide determination in waters. Talanta 2020;218:121108. [PMID: 32797872 DOI: 10.1016/j.talanta.2020.121108] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
99 Julika WN, Ajit A, Syazlin N, Ariff A, Naila A, Sulaiman AZ. Development of paper based amperometric biosensor for glucose content measurement in Malaysian Stingless Bee Honey. J Phys : Conf Ser 2020;1529:052035. [DOI: 10.1088/1742-6596/1529/5/052035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
100 Han T, Jin Y, Geng C, Aziz AUR, Zhang Y, Deng S, Ren H, Liu B. Microfluidic Paper-based Analytical Devices in Clinical Applications. Chromatographia 2020;83:693-701. [DOI: 10.1007/s10337-020-03892-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Fiedoruk-Pogrebniak M, Koncki R. LED&Paper-based analytical device for phosphatemia/calcemia diagnostics☆. J Pharm Biomed Anal 2020;186:113321. [PMID: 32413826 DOI: 10.1016/j.jpba.2020.113321] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
102 Díaz-González M, de la Escosura-Muñiz A, Fernandez-Argüelles MT, García Alonso FJ, Costa-Fernandez JM. Quantum Dot Bioconjugates for Diagnostic Applications. Top Curr Chem (Cham) 2020;378:35. [PMID: 32219574 DOI: 10.1007/s41061-020-0296-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
103 Maejima K, Hiruta Y, Citterio D. Centrifugal Paperfluidic Platform for Accelerated Distance-Based Colorimetric Signal Readout. Anal Chem 2020;92:4749-54. [DOI: 10.1021/acs.analchem.9b05782] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
104 Jin L, Hao Z, Zheng Q, Chen H, Zhu L, Wang C, Liu X, Lu C. A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food. Analytica Chimica Acta 2020;1100:215-24. [DOI: 10.1016/j.aca.2019.11.067] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
105 Li F, You M, Li S, Hu J, Liu C, Gong Y, Yang H, Xu F. Paper-based point-of-care immunoassays: Recent advances and emerging trends. Biotechnology Advances 2020;39:107442. [DOI: 10.1016/j.biotechadv.2019.107442] [Cited by in Crossref: 92] [Cited by in F6Publishing: 95] [Article Influence: 30.7] [Reference Citation Analysis]
106 Manbohi A, Ahmadi SH. Chitosan–Fe3O4 nanoparticle enzymatic electrodes on paper as an efficient assay for glucose and uric acid detection in biological fluids. Chem Pap 2020;74:2675-87. [DOI: 10.1007/s11696-020-01105-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
107 Li W, Zhang X, Miao C, Li R, Ji Y. Fluorescent paper-based sensor based on carbon dots for detection of folic acid. Anal Bioanal Chem 2020;412:2805-13. [PMID: 32078004 DOI: 10.1007/s00216-020-02507-w] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 9.7] [Reference Citation Analysis]
108 Pradela-filho LA, Andreotti IA, Carvalho JH, Araújo DA, Orzari LO, Gatti A, Takeuchi RM, Santos AL, Janegitz BC. Glass varnish-based carbon conductive ink: A new way to produce disposable electrochemical sensors. Sensors and Actuators B: Chemical 2020;305:127433. [DOI: 10.1016/j.snb.2019.127433] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
109 Dossi N, Toniolo R, Terzi F, Grazioli C, Svigelj R, Gobbi F, Bontempelli G. A Simple Strategy for Easily Assembling 3D Printed Miniaturized Cells Suitable for Simultaneous Electrochemical and Spectrophotometric Analyses. Electroanalysis 2020;32:291-300. [DOI: 10.1002/elan.201900461] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
110 Ratajczak K, Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydrate Polymers 2020;229:115463. [DOI: 10.1016/j.carbpol.2019.115463] [Cited by in Crossref: 87] [Cited by in F6Publishing: 89] [Article Influence: 29.0] [Reference Citation Analysis]
111 Liu Y, Shangguan J, Xu B, Yu X, Xu J, Chen H. Abnormal Liquid Chasing Effect in Paper Capillary Enables Versatile Gradient Generation on Microfluidic Paper Analytical Devices. Anal Chem 2020;92:2722-30. [DOI: 10.1021/acs.analchem.9b04934] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
112 Hong S, Samson AAS, Song JM. Application of fluorescence resonance energy transfer to bioprinting. TrAC Trends in Analytical Chemistry 2020;122:115749. [DOI: 10.1016/j.trac.2019.115749] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
113 Apilux A, Rengpipat S, Suwanjang W, Chailapakul O. Paper-based immunosensor with competitive assay for cortisol detection. Journal of Pharmaceutical and Biomedical Analysis 2020;178:112925. [DOI: 10.1016/j.jpba.2019.112925] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
114 Batista Deroco P, Giarola JDF, Wachholz Júnior D, Arantes Lorga G, Tatsuo Kubota L. Paper-based electrochemical sensing devices. Comprehensive Analytical Chemistry 2020. [DOI: 10.1016/bs.coac.2019.11.001] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
115 Katoh A, Maejima K, Hiruta Y, Citterio D. All-printed semiquantitative paper-based analytical devices relying on QR code array readout. Analyst 2020;145:6071-8. [DOI: 10.1039/d0an00955e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
116 Yomthiangthae P, Kondo T, Chailapakul O, Siangproh W. The effects of the supporting electrolyte on the simultaneous determination of vitamin B 2 , vitamin B 6 , and vitamin C using a modification-free screen-printed carbon electrode. New J Chem 2020;44:12603-12. [DOI: 10.1039/d0nj02175j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
117 Kung C, Hou C, Wang Y, Fu L. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sensors and Actuators B: Chemical 2019;301:126855. [DOI: 10.1016/j.snb.2019.126855] [Cited by in Crossref: 75] [Cited by in F6Publishing: 80] [Article Influence: 18.8] [Reference Citation Analysis]
118 Jiang Q, Wu J, Yao K, Yin Y, Gong MM, Yang C, Lin F. Paper-Based Microfluidic Device (DON-Chip) for Rapid and Low-Cost Deoxynivalenol Quantification in Food, Feed, and Feed Ingredients. ACS Sens 2019;4:3072-9. [PMID: 31713421 DOI: 10.1021/acssensors.9b01895] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
119 Suntornsuk W, Suntornsuk L. Recent applications of paper‐based point‐of‐care devices for biomarker detection. ELECTROPHORESIS 2020;41:287-305. [DOI: 10.1002/elps.201900258] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
120 Moro G, Bottari F, Van Loon J, Du Bois E, De Wael K, Moretto LM. Disposable electrodes from waste materials and renewable sources for (bio)electroanalytical applications. Biosens Bioelectron 2019;146:111758. [PMID: 31605984 DOI: 10.1016/j.bios.2019.111758] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
121 Primpray V, Chailapakul O, Tokeshi M, Rojanarata T, Laiwattanapaisal W. A paper-based analytical device coupled with electrochemical detection for the determination of dexamethasone and prednisolone in adulterated traditional medicines. Analytica Chimica Acta 2019;1078:16-23. [DOI: 10.1016/j.aca.2019.05.072] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
122 Teepoo S, Arsawiset S, Chanayota P. One-Step Polylactic Acid Screen-Printing Microfluidic Paper-Based Analytical Device: Application for Simultaneous Detection of Nitrite and Nitrate in Food Samples. Chemosensors 2019;7:44. [DOI: 10.3390/chemosensors7030044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
123 Dayao LAN, Liu C, Hsu S, Tayo LL, Ju W, Fu L. Multifunctional microchip-based distillation apparatus II - Aerated distillation for sulfur dioxide detection. Analytica Chimica Acta 2019;1071:44-52. [DOI: 10.1016/j.aca.2019.04.046] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
124 Hsu S, Liu C, Yang C, Fu L. Multifunctional microchip-based distillation apparatus I - Steam distillation for formaldehyde detection. Analytica Chimica Acta 2019;1062:94-101. [DOI: 10.1016/j.aca.2019.02.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
125 [DOI: 10.1109/transducers.2019.8808473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
126 Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors. Biotechnol Adv 2020;39:107398. [PMID: 31071431 DOI: 10.1016/j.biotechadv.2019.05.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
127 Andersen NI, Artyushkova K, Matanović I, Seow chavez M, Hickey DP, Abdelloui S, Minteer SD, Atanassov P. Modular Microfluidic Paper‐Based Devices for Multi‐Modal Cascade Catalysis. ChemElectroChem 2019;6:2448-55. [DOI: 10.1002/celc.201900211] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
128 Wang M, Wang Y, Gao B, Bian Y, Liu X, He Z, Zeng Y, Du X, Gu Z. Fast Strategy to Functional Paper Surfaces. ACS Appl Mater Interfaces 2019;11:14445-56. [DOI: 10.1021/acsami.9b00512] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
129 Fu LM, Liu CC, Yang CE, Wang YN, Ko CH. A PET/paper chip platform for high resolution sulphur dioxide detection in foods. Food Chem 2019;286:316-21. [PMID: 30827613 DOI: 10.1016/j.foodchem.2019.02.032] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 6.5] [Reference Citation Analysis]
130 Nesakumar N, Kesavan S, Li C, Alwarappan S. Microfluidic Electrochemical Devices for Biosensing. J Anal Test 2019;3:3-18. [DOI: 10.1007/s41664-019-0083-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
131 Liu L, Xie M, Chen Y, Wu Z. Simultaneous electrokinetic stacking and separation of anionic and cationic species on a paper fluidic channel. Lab Chip 2019;19:845-50. [DOI: 10.1039/c8lc01320a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
132 Deng S, Yang T, Zhang W, Ren C, Zhang J, Zhang Y, Cui T, Yue W. Rapid detection of trichlorfon residues by a microfluidic paper-based phosphorus-detection chip (μPPC). New J Chem 2019;43:7194-7. [DOI: 10.1039/c9nj00898e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
133 Gao B, Yang Y, Liao J, He B, Liu H. Bioinspired multistructured paper microfluidics for POCT. Lab Chip 2019;19:3602-8. [DOI: 10.1039/c9lc00907h] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
134 Xie L, Zi X, Zeng H, Sun J, Xu L, Chen S. Low-cost fabrication of a paper-based microfluidic using a folded pattern paper. Anal Chim Acta 2019;1053:131-8. [PMID: 30712558 DOI: 10.1016/j.aca.2018.12.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 6.2] [Reference Citation Analysis]