BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patel P, Ibrahim NM, Cheng K. The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA. Trends Pharmacol Sci 2021;42:448-60. [PMID: 33875229 DOI: 10.1016/j.tips.2021.03.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Saraswat A, Patel K. Delineating effect of cationic head group and preparation method on transfection versus toxicity of lipid-based nanoparticles for gene delivery.. [DOI: 10.21203/rs.3.rs-2649244/v1] [Reference Citation Analysis]
2 He Y, Barlag M, Plantinga JA, Molema G, Kamps JAAM. MC3/SAINT-O-Somes, a novel liposomal delivery system for efficient and safe delivery of siRNA into endothelial cells. J Liposome Res 2023;:1-10. [PMID: 36920318 DOI: 10.1080/08982104.2023.2187821] [Reference Citation Analysis]
3 Mendonça MCP, Kont A, Kowalski PS, O'Driscoll CM. Design of lipid-based nanoparticles for delivery of therapeutic nucleic acids. Drug Discov Today 2023;28:103505. [PMID: 36708760 DOI: 10.1016/j.drudis.2023.103505] [Reference Citation Analysis]
4 Shen Z, Liu C, Wang Z, Xie F, Liu X, Dong L, Pan X, Zeng C, Wang PG. Development of a Library of Disulfide Bond-Containing Cationic Lipids for mRNA Delivery. Pharmaceutics 2023;15. [PMID: 36839799 DOI: 10.3390/pharmaceutics15020477] [Reference Citation Analysis]
5 Correia JS, Mirón-Barroso S, Hutchings C, Ottaviani S, Somuncuoğlu B, Castellano L, Porter AE, Krell J, Georgiou TK. How does the polymer architecture and position of cationic charges affect cell viability? Polym Chem 2023;14:303-17. [PMID: 36760606 DOI: 10.1039/d2py01012g] [Reference Citation Analysis]
6 Sun D, Lu ZR. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm Res 2023;40:27-46. [PMID: 36600047 DOI: 10.1007/s11095-022-03460-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Huang Y, Yang M, Wang N, Li S, Liu Z, Li Z, Ji Z, Li B. Intracellular delivery of messenger RNA to macrophages with surfactant-derived lipid nanoparticles. Materials Today Advances 2022;16:100295. [DOI: 10.1016/j.mtadv.2022.100295] [Reference Citation Analysis]
8 Li X, Ma S, Gao T, Mai Y, Song Z, Yang J. The main battlefield of mRNA vaccine – Tumor immune microenvironment. International Immunopharmacology 2022;113:109367. [DOI: 10.1016/j.intimp.2022.109367] [Reference Citation Analysis]
9 Patel P, Fetse J, Lin CY, Guo Y, Hasan MR, Nakhjiri M, Zhao Z, Jain A, Cheng K. Development of amino acid-modified biodegradable lipid nanoparticles for siRNA delivery. Acta Biomater 2022;154:374-84. [PMID: 36191773 DOI: 10.1016/j.actbio.2022.09.065] [Reference Citation Analysis]
10 Syama K, Jakubek ZJ, Chen S, Zaifman J, Tam YYC, Zou S. Development of lipid nanoparticles and liposomes reference materials (II): cytotoxic profiles. Sci Rep 2022;12:18071. [PMID: 36302886 DOI: 10.1038/s41598-022-23013-2] [Reference Citation Analysis]
11 Syama K, Jakubek ZJ, Chen S, Zaifman J, Tam YYC, Zou S. Development of lipid nanoparticles and liposomes reference materials (II) - Cytotoxic profiles.. [DOI: 10.21203/rs.3.rs-1933757/v1] [Reference Citation Analysis]
12 Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García BE, Morales-Ávila E. Nanocarriers for delivery of siRNA as gene silencing mediator. EXCLI J 2022;21:1028-52. [PMID: 36110562 DOI: 10.17179/excli2022-4975] [Reference Citation Analysis]
13 Zou Y, Zhen Y, Zhao Y, Chen H, Wang R, Wang W, Ma P, Zhi D, Ju B, Zhang S. pH-sensitive, tail-modified, ester-linked ionizable cationic lipids for gene delivery. Biomaterials Advances 2022;139:212984. [DOI: 10.1016/j.bioadv.2022.212984] [Reference Citation Analysis]
14 Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis 2022;13:644. [PMID: 35871216 DOI: 10.1038/s41419-022-05075-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
15 Freire RVM, Haenni E, Hong L, Gontsarik M, Salentinig S. Bioinspired Oleic Acid–Triolein Emulsions for Functional Material Design. Adv Materials Inter. [DOI: 10.1002/admi.202200446] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Hald Albertsen C, Kulkarni J, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 2022;:114416. [PMID: 35787388 DOI: 10.1016/j.addr.2022.114416] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Kurniawan A, Fukuda Y. Analysis of the electric charge properties of biofilm for the development of biofilm matrices as biosorbents for water pollutant. Energ Ecol Environ . [DOI: 10.1007/s40974-022-00253-6] [Reference Citation Analysis]
18 Rajagopal P, Jayandharan GR, Maheswari Krishnan U. Polyketal-based nanocarriers: A new class of stimuli-responsive delivery systems for therapeutic applications. European Polymer Journal 2022;173:111290. [DOI: 10.1016/j.eurpolymj.2022.111290] [Reference Citation Analysis]
19 Huang J, Jacobsen J, Genina N, Larsen SW, Nielsen HM, Müllertz A, Mu H. Investigating the effect of graphene oxide in chitosan/alginate-based foams on the release and antifungal activity of clotrimazole in vitro. Eur J Pharm Sci 2022;:106204. [PMID: 35550171 DOI: 10.1016/j.ejps.2022.106204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Chen J, Zhu D, Liu X, Peng L. Amphiphilic Dendrimer Vectors for RNA Delivery: State-of-the-Art and Future Perspective. Acc Mater Res . [DOI: 10.1021/accountsmr.1c00272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Xu Z, Wang Q, Zhong H, Jiang Y, Shi X, Yuan B, Yu N, Zhang S, Yuan X, Guo S, Yang Y. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration 2022;2:20210081. [DOI: 10.1002/exp.20210081] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
22 Li Y, Ye Z, Yang H, Xu Q. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharmaceutica Sinica B 2022;12:2624-39. [DOI: 10.1016/j.apsb.2022.04.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
23 Hu B, Li B, Li K, Liu Y, Li C, Zheng L, Zhang M, Yang T, Guo S, Dong X, Zhang T, Liu Q, Hussain A, Weng Y, Peng L, Zhao Y, Liang XJ, Huang Y. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia. Sci Adv 2022;8:eabm1418. [PMID: 35171673 DOI: 10.1126/sciadv.abm1418] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
24 Mukai H, Ogawa K, Kato N, Kawakami S. Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metabolism and Pharmacokinetics 2022. [DOI: 10.1016/j.dmpk.2022.100450] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
25 Walther J, Wilbie D, Tissingh VSJ, Öktem M, van der Veen H, Lou B, Mastrobattista E. Impact of Formulation Conditions on Lipid Nanoparticle Characteristics and Functional Delivery of CRISPR RNP for Gene Knock-Out and Correction. Pharmaceutics 2022;14:213. [DOI: 10.3390/pharmaceutics14010213] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Pantelić I, Ilić T, Nikolić I, Savić S. Lipid nanoparticles employed in mRNA-based COVID-19 vaccines: An overview of materials and processes used for development and production. Arhiv za farmaciju 2022;72:20-35. [DOI: 10.5937/arhfarm72-33660] [Reference Citation Analysis]
27 Gómez-aguado I, Rodríguez-castejón J, Beraza-millor M, Rodríguez-gascón A, del Pozo-rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. mRNA-Based Therapeutics 2022. [DOI: 10.1016/bs.ircmb.2022.04.010] [Reference Citation Analysis]
28 Roh EH, Fromen CA, Sullivan MO. Inhalable mRNA vaccines for respiratory diseases: a roadmap. Curr Opin Biotechnol 2021;74:104-9. [PMID: 34894574 DOI: 10.1016/j.copbio.2021.10.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Suzuki Y, Ishihara H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab Pharmacokinet 2021;41:100424. [PMID: 34757287 DOI: 10.1016/j.dmpk.2021.100424] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 16.5] [Reference Citation Analysis]
30 Chapa-gonzález C, Sosa KV, Roacho-pérez JA, García-casillas PE. Adsorption of serum protein in chitosan-coated and polyethyleneimine-coated magnetite nanoparticles. MRS Advances 2021;6:913-7. [DOI: 10.1557/s43580-021-00153-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Miele D, Xia X, Catenacci L, Sorrenti M, Rossi S, Sandri G, Ferrari F, Rossi JJ, Bonferoni MC. Chitosan Oleate Coated PLGA Nanoparticles as siRNA Drug Delivery System. Pharmaceutics 2021;13:1716. [PMID: 34684009 DOI: 10.3390/pharmaceutics13101716] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Hejdankova Z, Vanek V, Sedlak F, Prochazka J, Diederichs A, Kereïche S, Novotna B, Budesinsky M, Birkus G, Grantz Saskova K, Cigler P. Lipid Nanoparticles for Broad‐Spectrum Nucleic Acid Delivery. Adv Funct Materials 2021;31:2101391. [DOI: 10.1002/adfm.202101391] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]