1 |
Rong Y, Wang Z, Tang P, Wang J, Ji C, Chang J, Zhu Y, Ye W, Bai J, Liu W, Yin G, Yu L, Zhou X, Cai W. Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioactive Materials 2023;23:328-342. [DOI: 10.1016/j.bioactmat.2022.11.011] [Reference Citation Analysis]
|
2 |
Han T, Song P, Wu Z, Wang C, Liu Y, Ying W, Li K, Shen C. Inflammatory stimulation of astrocytes affects the expression of miRNA-22-3p within NSCs-EVs regulating remyelination by targeting KDM3A. Stem Cell Res Ther 2023;14:52. [PMID: 36959678 DOI: 10.1186/s13287-023-03284-w] [Reference Citation Analysis]
|
3 |
Xin W, Baokun Z, Zhiheng C, Qiang S, Erzhu Y, Jianguang X, Xiaofeng L. Biodegradable bilayer hydrogel membranes loaded with bazedoxifene attenuate blood-spinal cord barrier disruption via the NF-κB pathway after acute spinal cord injury. Acta Biomater 2023;159:140-55. [PMID: 36736849 DOI: 10.1016/j.actbio.2023.01.056] [Reference Citation Analysis]
|
4 |
Zhang X, Jiang W, Lu Y, Mao T, Gu Y, Ju D, Dong C. Exosomes combined with biomaterials in the treatment of spinal cord injury. Front Bioeng Biotechnol 2023;11. [DOI: 10.3389/fbioe.2023.1077825] [Reference Citation Analysis]
|
5 |
Roudi S, Rädler JA, El Andaloussi S. Therapeutic potential of extracellular vesicles in neurodegenerative disorders. Handb Clin Neurol 2023;193:243-66. [PMID: 36803815 DOI: 10.1016/B978-0-323-85555-6.00017-5] [Reference Citation Analysis]
|
6 |
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2022;13:1084101. [PMID: 36685598 DOI: 10.3389/fimmu.2022.1084101] [Reference Citation Analysis]
|
7 |
Kimura T, Horikoshi Y. MicroRNA-based targeting of the Rho/ROCK pathway in therapeutic strategies after spinal cord injury. Neural Regen Res 2023;18:311. [DOI: 10.4103/1673-5374.346480] [Reference Citation Analysis]
|
8 |
Gong W, Zhang T, Che M, Wang Y, He C, Liu L, Lv Z, Xiao C, Wang H, Zhang S. Recent advances in nanomaterials for the treatment of spinal cord injury. Mater Today Bio 2023;18:100524. [PMID: 36619202 DOI: 10.1016/j.mtbio.2022.100524] [Reference Citation Analysis]
|
9 |
Liu Z, Guo S, Dong L, Wu P, Li K, Li X, Li X, Qian H, Fu Q. A tannic acid doped hydrogel with small extracellular vesicles derived from mesenchymal stem cells promotes spinal cord repair by regulating reactive oxygen species microenvironment. Mater Today Bio 2022;16:100425. [PMID: 36186847 DOI: 10.1016/j.mtbio.2022.100425] [Reference Citation Analysis]
|
10 |
Xiao X, Li W, Xu Z, Sun Z, Ye H, Wu Y, Zhang Y, Xie L, Jiang D, Jia R, Wang X. Extracellular vesicles from human umbilical cord mesenchymal stem cells reduce lipopolysaccharide-induced spinal cord injury neuronal apoptosis by mediating miR-29b-3p/PTEN. Connect Tissue Res 2022;63:634-49. [PMID: 35603476 DOI: 10.1080/03008207.2022.2060826] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Reymond S, Vujić T, Sanchez J. Neurovascular Unit-Derived Extracellular Vesicles: From Their Physiopathological Roles to Their Clinical Applications in Acute Brain Injuries. Biomedicines 2022;10:2147. [DOI: 10.3390/biomedicines10092147] [Reference Citation Analysis]
|
12 |
Hu X, Liu Z, Zhou X, Jin Q, Xu W, Zhai X, Fu Q, Qian H. Small extracellular vesicles derived from mesenchymal stem cell facilitate functional recovery in spinal cord injury by activating neural stem cells via the ERK1/2 pathway. Front Cell Neurosci 2022;16:954597. [DOI: 10.3389/fncel.2022.954597] [Reference Citation Analysis]
|
13 |
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.08.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Yang ZL, Rao J, Lin FB, Liang ZY, Xu XJ, Lin YK, Chen XY, Wang CH, Chen CM. The Role of Exosomes and Exosomal Noncoding RNAs From Different Cell Sources in Spinal Cord Injury. Front Cell Neurosci 2022;16:882306. [PMID: 35518647 DOI: 10.3389/fncel.2022.882306] [Reference Citation Analysis]
|
15 |
Liu C, Hu F, Jiao G, Guo Y, Zhou P, Zhang Y, Zhang Z, Yi J, You Y, Li Z, Wang H, Zhang X. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury. J Nanobiotechnology 2022;20:65. [PMID: 35109874 DOI: 10.1186/s12951-022-01273-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Li C, Qin T, Liu Y, Wen H, Zhao J, Luo Z, Peng W, Lu H, Duan C, Cao Y, Hu J. Microglia-Derived Exosomal microRNA-151-3p Enhances Functional Healing After Spinal Cord Injury by Attenuating Neuronal Apoptosis via Regulating the p53/p21/CDK1 Signaling Pathway. Front Cell Dev Biol 2022;9:783017. [DOI: 10.3389/fcell.2021.783017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
|
17 |
Pan D, Liu W, Zhu S, Fan B, Yu N, Ning G, Feng S. Potential of different cells-derived exosomal microRNA cargos for treating spinal cord injury. J Orthop Translat 2021;31:33-40. [PMID: 34760623 DOI: 10.1016/j.jot.2021.09.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
18 |
Jo SH, Kim SH, Kim C, Park SH. Characterization of Marine Organism Extracellular Matrix-Anchored Extracellular Vesicles and Their Biological Effect on the Alleviation of Pro-Inflammatory Cytokines. Mar Drugs 2021;19:592. [PMID: 34822463 DOI: 10.3390/md19110592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
19 |
Huang W, Lin M, Yang C, Wang F, Zhang M, Gao J, Yu X. Rat Bone Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-494 Promoting Neurofilament Regeneration and Behavioral Function Recovery after Spinal Cord Injury. Oxid Med Cell Longev 2021;2021:1634917. [PMID: 34635862 DOI: 10.1155/2021/1634917] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
20 |
Wang HD, Wei ZJ, Li JJ, Feng SQ. Application value of biofluid-based biomarkers for the diagnosis and treatment of spinal cord injury. Neural Regen Res 2022;17:963-71. [PMID: 34558509 DOI: 10.4103/1673-5374.324823] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
21 |
Jia Y, Lu T, Chen Q, Pu X, Ji L, Yang J, Luo C. Exosomes secreted from sonic hedgehog-modified bone mesenchymal stem cells facilitate the repair of rat spinal cord injuries. Acta Neurochir (Wien) 2021;163:2297-306. [PMID: 33821317 DOI: 10.1007/s00701-021-04829-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
22 |
Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021;15:682259. [PMID: 34220440 DOI: 10.3389/fnins.2021.682259] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
23 |
Racchetti G, Meldolesi J. Extracellular Vesicles of Mesenchymal Stem Cells: Therapeutic Properties Discovered with Extraordinary Success. Biomedicines 2021;9:667. [PMID: 34200818 DOI: 10.3390/biomedicines9060667] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
|