BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ducy M, Sesma-Sanz L, Guitton-Sert L, Lashgari A, Gao Y, Brahiti N, Rodrigue A, Margaillan G, Caron MC, Côté J, Simard J, Masson JY. The Tumor Suppressor PALB2: Inside Out. Trends Biochem Sci 2019;44:226-40. [PMID: 30638972 DOI: 10.1016/j.tibs.2018.10.008] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 22.3] [Reference Citation Analysis]
Number Citing Articles
1 Courant F, Bougras-Cartron G, Abadie C, Frenel JS, Cartron PF. Modulation of DNA Methylation/Demethylation Reactions Induced by Nutraceuticals and Pollutants of Exposome Can Promote a C > T Mutation in the Breast Cancer Predisposing Gene PALB2. Epigenomes 2022;6. [PMID: 36278678 DOI: 10.3390/epigenomes6040032] [Reference Citation Analysis]
2 Hamid AB, Frank LE, Bouley RA, Petreaca RC. Pan-cancer analysis of co-occurring mutations in RAD52 and the BRCA1-BRCA2-PALB2 axis in human cancers. PLoS ONE 2022;17:e0273736. [DOI: 10.1371/journal.pone.0273736] [Reference Citation Analysis]
3 Xiong Y, Li M, Shen Y, Ma T, Bai J, Zhang Y. PALB2 as a factor to predict the prognosis of patients with skull base chordoma. Front Oncol 2022;12:996892. [DOI: 10.3389/fonc.2022.996892] [Reference Citation Analysis]
4 Martins TF, Braga Magalhães AF, Verardo LL, Santos GC, Silva Fernandes AA, Gomes Vieira JI, Irano N, dos Santos DB. Functional analysis of litter size and number of teats in pigs: From GWAS to post-GWAS. Theriogenology 2022. [DOI: 10.1016/j.theriogenology.2022.09.005] [Reference Citation Analysis]
5 Wu S, Qi L, Chen H, Zhang K, He J, Guo X, Shen L, Zhou Y, Zhong X, Zheng S, Zhou J, Chen Y. Functional assessment of missense variants of uncertain significance in the cancer susceptibility gene PALB2. NPJ Breast Cancer 2022;8:86. [PMID: 35853885 DOI: 10.1038/s41523-022-00454-6] [Reference Citation Analysis]
6 Yoshimura A, Imoto I, Iwata H. Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int J Mol Sci 2022;23:7481. [PMID: 35806485 DOI: 10.3390/ijms23137481] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Olakowski M, Bułdak Ł. Current status of inherited pancreatic cancer. Hered Cancer Clin Pract 2022;20:26. [PMID: 35761384 DOI: 10.1186/s13053-022-00224-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Piombino C, Cortesi L. Insights into the Possible Molecular Mechanisms of Resistance to PARP Inhibitors. Cancers 2022;14:2804. [DOI: 10.3390/cancers14112804] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Devoucoux M, Roques C, Lachance C, Lashgari A, Joly-Beauparlant C, Jacquet K, Alerasool N, Prudente A, Taipale M, Droit A, Lambert JP, Hussein SMI, Côté J. MRG Proteins Are Shared by Multiple Protein Complexes With Distinct Functions. Mol Cell Proteomics 2022;21:100253. [PMID: 35636729 DOI: 10.1016/j.mcpro.2022.100253] [Reference Citation Analysis]
10 Secondino A, Starnone F, Veneruso I, Di Tella M, Conato S, De Angelis C, De Placido S, D’argenio V. Evaluation of a Four-Gene Panel for Hereditary Cancer Risk Assessment. Genes 2022;13:682. [DOI: 10.3390/genes13040682] [Reference Citation Analysis]
11 Fu X, Tan W, Song Q, Pei H, Li J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2022;10:813457. [PMID: 35300412 DOI: 10.3389/fcell.2022.813457] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Redington J, Deveryshetty J, Kanikkannan L, Miller I, Korolev S. Structural Insight into the Mechanism of PALB2 Interaction with MRG15. Genes (Basel) 2021;12:2002. [PMID: 34946951 DOI: 10.3390/genes12122002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Valenzuela-Palomo A, Bueno-Martínez E, Sanoguera-Miralles L, Lorca V, Fraile-Bethencourt E, Esteban-Sánchez A, Gómez-Barrero S, Carvalho S, Allen J, García-Álvarez A, Pérez-Segura P, Dorling L, Easton DF, Devilee P, Vreeswijk MP, de la Hoya M, Velasco EA. Splicing predictions, minigene analyses, and ACMG-AMP clinical classification of 42 germline PALB2 splice-site variants. J Pathol 2021. [PMID: 34846068 DOI: 10.1002/path.5839] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
14 Kang Z, Fu P, Alcivar AL, Fu H, Redon C, Foo TK, Zuo Y, Ye C, Baxley R, Madireddy A, Buisson R, Bielinsky AK, Zou L, Shen Z, Aladjem MI, Xia B. BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage. Nat Commun 2021;12:5966. [PMID: 34645815 DOI: 10.1038/s41467-021-26227-6] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
15 Woodward ER, Meyer S. Fanconi Anaemia, Childhood Cancer and the BRCA Genes. Genes (Basel) 2021;12:1520. [PMID: 34680915 DOI: 10.3390/genes12101520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Velic D, Demeyer A, Peterlini T, Benhelli-Mokrani H, Mathé-Allainmat M, Masson JY, Fleury F. Molecular Determinant of DIDS Analogs Targeting RAD51 Activity. Molecules 2021;26:5460. [PMID: 34576930 DOI: 10.3390/molecules26185460] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Devoucoux M, Roques C, Lachance C, Lashgari A, Joly-beauparlant C, Jacquet K, Alerasool N, Prudente A, Taipale M, Droit A, Lambert J, Hussein SM, Côté J. MRG proteins are shared by multiple protein complexes with distinct functions.. [DOI: 10.1101/2021.08.11.456009] [Reference Citation Analysis]
18 Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021;12:1229. [PMID: 34440403 DOI: 10.3390/genes12081229] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Gao L, Wu ZX, Assaraf YG, Chen ZS, Wang L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat 2021;57:100770. [PMID: 34175687 DOI: 10.1016/j.drup.2021.100770] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 21.0] [Reference Citation Analysis]
20 Woodward ER, van Veen EM, Forde C, Harkness EF, Byers HJ, Ellingford JM, Burghel GJ, Schlech H, Bowers NL, Wallace AJ, Howell SJ, Howell A, Lalloo F, Newman WG, Smith MJ, Gareth Evans D. Clinical utility of testing for PALB2 and CHEK2 c.1100delC in breast and ovarian cancer. Genet Med 2021. [PMID: 34113003 DOI: 10.1038/s41436-021-01234-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Toh M, Ngeow J. Homologous Recombination Deficiency: Cancer Predispositions and Treatment Implications. Oncologist 2021;26:e1526-37. [PMID: 34021944 DOI: 10.1002/onco.13829] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
22 Matos-Rodrigues G, Martini E, Lopez BS. Mouse Models for Deciphering the Impact of Homologous Recombination on Tumorigenesis. Cancers (Basel) 2021;13:2083. [PMID: 33923105 DOI: 10.3390/cancers13092083] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Ng PS, Pan JW, Ahmad Zabidi MM, Rajadurai P, Yip CH, Reuda OM, Dunning AM, Antoniou AC, Easton DF, Caldas C, Chin SF, Teo SH. Characterisation of PALB2 tumours through whole-exome and whole-transcriptomic analyses. NPJ Breast Cancer 2021;7:46. [PMID: 33893315 DOI: 10.1038/s41523-021-00254-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Ng PS, Boonen RA, Wijaya E, Chong CE, Sharma M, Knaup S, Mariapun S, Ho WK, Lim J, Yoon SY, Mohd Taib NA, See MH, Li J, Lim SH, Tan EY, Tan BK, Tan SM, Tan VK, van Dam RM, Rahmat K, Yip CH, Carvalho S, Luccarini C, Baynes C, Dunning AM, Antoniou A, van Attikum H, Easton DF, Hartman M, Teo SH. Characterisation of protein-truncating and missense variants in PALB2 in 15 768 women from Malaysia and Singapore. J Med Genet 2021:jmedgenet-2020-107471. [PMID: 33811135 DOI: 10.1136/jmedgenet-2020-107471] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Henry C, Henrikus SS. Elucidating Recombination Mediator Function Using Biophysical Tools. Biology (Basel) 2021;10:288. [PMID: 33916151 DOI: 10.3390/biology10040288] [Reference Citation Analysis]
26 Nawar N, Paul A, Mahmood HN, Faisal MI, Hosen MI, Shekhar HU. Structure analysis of deleterious nsSNPs in human PALB2 protein for functional inference. Bioinformation 2021;17:424-38. [PMID: 34092963 DOI: 10.6026/97320630017424] [Reference Citation Analysis]
27 Cortesi L, Piombino C, Toss A. Germline Mutations in Other Homologous Recombination Repair-Related Genes Than BRCA1/2: Predictive or Prognostic Factors? J Pers Med 2021;11:245. [PMID: 33800556 DOI: 10.3390/jpm11040245] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
28 Toh MR, Low CE, Chong ST, Chan SH, Ishak NDB, Courtney E, Kolinjivadi AM, Rodrigue A, Masson JY, Ngeow J. Missense PALB2 germline variant disrupts nuclear localization of PALB2 in a patient with breast cancer. Fam Cancer 2020;19:123-31. [PMID: 32048105 DOI: 10.1007/s10689-020-00163-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 De Angelis C, Nardelli C, Concolino P, Pagliuca M, Setaro M, De Paolis E, De Placido P, Forestieri V, Scaglione GL, Ranieri A, Lombardo B, Pastore L, De Placido S, Capoluongo E. Case Report: Detection of a Novel Germline PALB2 Deletion in a Young Woman With Hereditary Breast Cancer: When the Patient's Phenotype History Doesn't Lie. Front Oncol 2021;11:602523. [PMID: 33718150 DOI: 10.3389/fonc.2021.602523] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Deshmukh AL, Porro A, Mohiuddin M, Lanni S, Panigrahi GB, Caron MC, Masson JY, Sartori AA, Pearson CE. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. J Huntingtons Dis 2021;10:95-122. [PMID: 33579867 DOI: 10.3233/JHD-200448] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
31 Guitton-Sert L, Gao Y, Masson JY. Animal models of Fanconi anemia: A developmental and therapeutic perspective on a multifaceted disease. Semin Cell Dev Biol 2021;113:113-31. [PMID: 33558144 DOI: 10.1016/j.semcdb.2020.11.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
32 Hatchi E, Goehring L, Landini S, Skourti-Stathaki K, DeConti DK, Abderazzaq FO, Banerjee P, Demers TM, Wang YE, Quackenbush J, Livingston DM. BRCA1 and RNAi factors promote repair mediated by small RNAs and PALB2-RAD52. Nature 2021;591:665-70. [PMID: 33536619 DOI: 10.1038/s41586-020-03150-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
33 Locke AJ, Hossain L, McCrostie G, Ronato DA, Fitieh A, Rafique TA, Mashayekhi F, Motamedi M, Masson JY, Ismail IH. SUMOylation mediates CtIP's functions in DNA end resection and replication fork protection. Nucleic Acids Res 2021;49:928-53. [PMID: 33406258 DOI: 10.1093/nar/gkaa1232] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
34 Ge O, Huang A, Wang X, Chen Y, Ye Y, Schomburg L. PALB2 upregulation is associated with a poor prognosis in pancreatic ductal adenocarcinoma. Oncol Lett 2021;21:224. [PMID: 33613713 DOI: 10.3892/ol.2021.12485] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Setton J, Reis-Filho JS, Powell SN. Homologous recombination deficiency: how genomic signatures are generated. Curr Opin Genet Dev 2021;66:93-100. [PMID: 33477018 DOI: 10.1016/j.gde.2021.01.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
36 Padella A, Fontana MC, Marconi G, Fonzi E, Petracci E, Ferrari A, Baldazzi C, Papayannidis C, Ghelli Luserna Di Rorá A, Testoni N, Castellani G, Haferlach T, Martinelli G, Simonetti G. Loss of PALB2 predicts poor prognosis in acute myeloid leukemia and suggests novel therapeutic strategies targeting the DNA repair pathway. Blood Cancer J 2021;11:7. [PMID: 33414401 DOI: 10.1038/s41408-020-00396-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Grosel TW, Karl M, Pilarski RT, Davidorf FH, Abdel-Rahman MH, Cebulla CM. Atypical choroidal nevus in a subject with a germline PALB2 pathogenic variant. Fam Cancer 2021. [PMID: 33403473 DOI: 10.1007/s10689-020-00220-2] [Reference Citation Analysis]
38 Fajardo-orduña G, Chamorro-plata D. Molecular and therapeutic bases of cancer. Oncological Functional Nutrition 2021. [DOI: 10.1016/b978-0-12-819828-5.00002-4] [Reference Citation Analysis]
39 Zhang Y, Park JY, Zhang F, Olson SH, Orlow I, Li Y, Kurtz RC, Ladanyi M, Chen J, Toland AE, Zhang L, Andreassen PR. The p.Ser64Leu and p.Pro104Leu missense variants of PALB2 identified in familial pancreatic cancer patients compromise the DNA damage response. Hum Mutat 2021;42:150-63. [PMID: 33169439 DOI: 10.1002/humu.24133] [Reference Citation Analysis]
40 Mars N, Widén E, Kerminen S, Meretoja T, Pirinen M, Della Briotta Parolo P, Palta P, Palotie A, Kaprio J, Joensuu H, Daly M, Ripatti S; FinnGen. The role of polygenic risk and susceptibility genes in breast cancer over the course of life. Nat Commun 2020;11:6383. [PMID: 33318493 DOI: 10.1038/s41467-020-19966-5] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 27.5] [Reference Citation Analysis]
41 Sheta R, Bachvarova M, Plante M, Renaud MC, Sebastianelli A, Gregoire J, Navarro JM, Perez RB, Masson JY, Bachvarov D. Development of a 3D functional assay and identification of biomarkers, predictive for response of high-grade serous ovarian cancer (HGSOC) patients to poly-ADP ribose polymerase inhibitors (PARPis): targeted therapy. J Transl Med 2020;18:439. [PMID: 33213473 DOI: 10.1186/s12967-020-02613-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
42 Han J, Yu M, Bai Y, Yu J, Jin F, Li C, Zeng R, Peng J, Li A, Song X, Li H, Wu D, Li L. Elevated CXorf67 Expression in PFA Ependymomas Suppresses DNA Repair and Sensitizes to PARP Inhibitors. Cancer Cell 2020;38:844-856.e7. [PMID: 33186520 DOI: 10.1016/j.ccell.2020.10.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
43 Nepomuceno TC, Carvalho MA, Rodrigue A, Simard J, Masson JY, Monteiro ANA. PALB2 Variants: Protein Domains and Cancer Susceptibility. Trends Cancer 2021;7:188-97. [PMID: 33139182 DOI: 10.1016/j.trecan.2020.10.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
44 Pavanello M, Chan IH, Ariff A, Pharoah PD, Gayther SA, Ramus SJ. Rare Germline Genetic Variants and the Risks of Epithelial Ovarian Cancer. Cancers (Basel) 2020;12:E3046. [PMID: 33086730 DOI: 10.3390/cancers12103046] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
45 Preobrazhenskaya EV, Shleykina AU, Gorustovich OA, Martianov AS, Bizin IV, Anisimova EI, Sokolova TN, Chuinyshena SA, Kuligina ES, Togo AV, Belyaev AM, Ivantsov AO, Sokolenko AP, Imyanitov EN. Frequency and molecular characteristics of PALB2-associated cancers in Russian patients. Int J Cancer 2021;148:203-10. [PMID: 32997802 DOI: 10.1002/ijc.33317] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
46 Yu Z, Mersaoui SY, Guitton-Sert L, Coulombe Y, Song J, Masson JY, Richard S. DDX5 resolves R-loops at DNA double-strand breaks to promote DNA repair and avoid chromosomal deletions. NAR Cancer 2020;2:zcaa028. [PMID: 33015627 DOI: 10.1093/narcan/zcaa028] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
47 Boonen RACM, Vreeswijk MPG, van Attikum H. Functional Characterization of PALB2 Variants of Uncertain Significance: Toward Cancer Risk and Therapy Response Prediction. Front Mol Biosci 2020;7:169. [PMID: 33195396 DOI: 10.3389/fmolb.2020.00169] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
48 Tsai LJ, Lopezcolorado FW, Bhargava R, Mendez-Dorantes C, Jahanshir E, Stark JM. RNF8 has both KU-dependent and independent roles in chromosomal break repair. Nucleic Acids Res 2020;48:6032-52. [PMID: 32427332 DOI: 10.1093/nar/gkaa380] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
49 Schweizer MT, Cheng HH, Nelson PS, Montgomery RB. Two Steps Forward and One Step Back for Precision in Prostate Cancer Treatment. J Clin Oncol 2020;38:3740-2. [PMID: 32897829 DOI: 10.1200/JCO.20.01755] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
50 Wu Q, Kawale A, Sung P. Mechanism and significance of chromosome damage repair by homologous recombination. Essays in Biochemistry 2020;64:779-90. [DOI: 10.1042/ebc20190093] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
51 Hu H, Zhu Y, Pu N, Burkhart RA, Burns W, Laheru D, Zheng L, He J, Goggins MG, Yu J. Association of Germline Variants in Human DNA Damage Repair Genes and Response to Adjuvant Chemotherapy in Resected Pancreatic Ductal Adenocarcinoma. J Am Coll Surg 2020;231:527-535.e14. [PMID: 32659497 DOI: 10.1016/j.jamcollsurg.2020.06.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
52 Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020;5:90. [PMID: 32532965 DOI: 10.1038/s41392-020-0196-9] [Cited by in Crossref: 80] [Cited by in F6Publishing: 87] [Article Influence: 40.0] [Reference Citation Analysis]
53 Pan W, Lu K, Wang W, Yao J, Hou Y. PALB2 as a potential prognostic biomarker for colorectal cancer. Comput Biol Chem 2020;87:107289. [PMID: 32497983 DOI: 10.1016/j.compbiolchem.2020.107289] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Rodrigue A, Margaillan G, Torres Gomes T, Coulombe Y, Montalban G, da Costa E Silva Carvalho S, Milano L, Ducy M, De-Gregoriis G, Dellaire G, Araújo da Silva W Jr, Monteiro AN, Carvalho MA, Simard J, Masson JY. A global functional analysis of missense mutations reveals two major hotspots in the PALB2 tumor suppressor. Nucleic Acids Res 2019;47:10662-77. [PMID: 31586400 DOI: 10.1093/nar/gkz780] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
55 Zhou J, Wang H, Fu F, Li Z, Feng Q, Wu W, Liu Y, Wang C, Chen Y. Spectrum of PALB2 germline mutations and characteristics of PALB2-related breast cancer: Screening of 16,501 unselected patients with breast cancer and 5890 controls by next-generation sequencing. Cancer 2020;126:3202-8. [PMID: 32339256 DOI: 10.1002/cncr.32905] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
56 Mars N, Widén E, Kerminen S, Meretoja T, Pirinen M, Palta P, Palotie A, Kaprio J, Joensuu H, Daly M, Ripatti S, FinnGen. Polygenic risk, susceptibility genes, and breast cancer over the life course.. [DOI: 10.1101/2020.04.17.20069229] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
57 Wu S, Zhou J, Zhang K, Chen H, Luo M, Lu Y, Sun Y, Chen Y. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front Oncol 2020;10:301. [PMID: 32185139 DOI: 10.3389/fonc.2020.00301] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
58 Belotserkovskaya R, Raga Gil E, Lawrence N, Butler R, Clifford G, Wilson MD, Jackson SP. PALB2 chromatin recruitment restores homologous recombination in BRCA1-deficient cells depleted of 53BP1. Nat Commun. 2020;11:819. [PMID: 32041954 DOI: 10.1038/s41467-020-14563-y] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 15.5] [Reference Citation Analysis]
59 da Costa E Silva Carvalho S, Cury NM, Brotto DB, de Araujo LF, Rosa RCA, Texeira LA, Plaça JR, Marques AA, Peronni KC, Ruy PC, Molfetta GA, Moriguti JC, Carraro DM, Palmero EI, Ashton-Prolla P, de Faria Ferraz VE, Silva WA Jr. Germline variants in DNA repair genes associated with hereditary breast and ovarian cancer syndrome: analysis of a 21 gene panel in the Brazilian population. BMC Med Genomics 2020;13:21. [PMID: 32039725 DOI: 10.1186/s12920-019-0652-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
60 Ji MS, Eldred BSC, Liu R, Pianka ST, Molaie D, Kevan B, Pan S, Lai TJ, Nguyen NT, Chow FE, Yong WH, Cox CD, Reeh DN, Li T, Liau LM, Nghiemphu PL, Cloughesy TF, Li G, Lai A. Targeted next-generation sequencing of 565 neuro-oncology patients at UCLA: A single-institution experience. Neurooncol Adv 2020;2:vdaa009. [PMID: 32118206 DOI: 10.1093/noajnl/vdaa009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
61 Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, Dunning AM, Redman J, Scarth J, Plaskocinska I, Luccarini C, Shah M, Pooley K, Dorling L, Lee A, Adank MA, Adlard J, Aittomäki K, Andrulis IL, Ang P, Barwell J, Bernstein JL, Bobolis K, Borg Å, Blomqvist C, Claes KBM, Concannon P, Cuggia A, Culver JO, Damiola F, de Pauw A, Diez O, Dolinsky JS, Domchek SM, Engel C, Evans DG, Fostira F, Garber J, Golmard L, Goode EL, Gruber SB, Hahnen E, Hake C, Heikkinen T, Hurley JE, Janavicius R, Kleibl Z, Kleiblova P, Konstantopoulou I, Kvist A, Laduca H, Lee ASG, Lesueur F, Maher ER, Mannermaa A, Manoukian S, McFarland R, McKinnon W, Meindl A, Metcalfe K, Mohd Taib NA, Moilanen J, Nathanson KL, Neuhausen S, Ng PS, Nguyen-Dumont T, Nielsen SM, Obermair F, Offit K, Olopade OI, Ottini L, Penkert J, Pylkäs K, Radice P, Ramus SJ, Rudaitis V, Side L, Silva-Smith R, Silvestri V, Skytte AB, Slavin T, Soukupova J, Tondini C, Trainer AH, Unzeitig G, Usha L, van Overeem Hansen T, Whitworth J, Wood M, Yip CH, Yoon SY, Yussuf A, Zogopoulos G, Goldgar D, Hopper JL, Chenevix-Trench G, Pharoah P, George SHL, Balmaña J, Houdayer C, James P, El-Haffaf Z, Ehrencrona H, Janatova M, Peterlongo P, Nevanlinna H, Schmutzler R, Teo SH, Robson M, Pal T, Couch F, Weitzel JN, Elliott A, Southey M, Winqvist R, Easton DF, Foulkes WD, Antoniou AC, Tischkowitz M. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J Clin Oncol 2020;38:674-85. [PMID: 31841383 DOI: 10.1200/JCO.19.01907] [Cited by in Crossref: 161] [Cited by in F6Publishing: 174] [Article Influence: 53.7] [Reference Citation Analysis]
62 Boonen RACM, Rodrigue A, Stoepker C, Wiegant WW, Vroling B, Sharma M, Rother MB, Celosse N, Vreeswijk MPG, Couch F, Simard J, Devilee P, Masson JY, van Attikum H. Functional analysis of genetic variants in the high-risk breast cancer susceptibility gene PALB2. Nat Commun 2019;10:5296. [PMID: 31757951 DOI: 10.1038/s41467-019-13194-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
63 Attwood KM, Salsman J, Chung D, Mathavarajah S, Van Iderstine C, Dellaire G. PML isoform expression and DNA break location relative to PML nuclear bodies impacts the efficiency of homologous recombination. Biochem Cell Biol 2020;98:314-26. [PMID: 31671275 DOI: 10.1139/bcb-2019-0115] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
64 Wiltshire T, Ducy M, Foo TK, Hu C, Lee KY, Belur Nagaraj A, Rodrigue A, Gomes TT, Simard J, Monteiro ANA, Xia B, Carvalho MA, Masson JY, Couch FJ. Functional characterization of 84 PALB2 variants of uncertain significance. Genet Med 2020;22:622-32. [PMID: 31636395 DOI: 10.1038/s41436-019-0682-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
65 Uemura M, Ochiai K, Morimatsu M, Michishita M, Onozawa E, Azakami D, Uno Y, Yoshikawa Y, Sasaki T, Watanabe M, Omi T. The canine RAD51 mutation leads to the attenuation of interaction with PALB2. Vet Comp Oncol 2020;18:247-55. [PMID: 31518051 DOI: 10.1111/vco.12542] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
66 Pooley KA, Dunning AM. DNA damage and hormone-related cancer: a repair pathway view. Human Molecular Genetics 2019;28:R180-6. [DOI: 10.1093/hmg/ddz206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
67 Deveryshetty J, Peterlini T, Ryzhikov M, Brahiti N, Dellaire G, Masson JY, Korolev S. Novel RNA and DNA strand exchange activity of the PALB2 DNA binding domain and its critical role for DNA repair in cells. Elife 2019;8:e44063. [PMID: 31017574 DOI: 10.7554/eLife.44063] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]