BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sutton AK, Krashes MJ. Integrating Hunger with Rival Motivations. Trends Endocrinol Metab 2020;31:495-507. [PMID: 32387196 DOI: 10.1016/j.tem.2020.04.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Prilutski Y, Livneh Y. Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology (Bethesda) 2023;38:0. [PMID: 36040864 DOI: 10.1152/physiol.00019.2022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Zhang Q, Krashes MJ. Interfacing pain and hunger. Trends Endocrinol Metab 2023:S1043-2760(23)00035-8. [PMID: 36841699 DOI: 10.1016/j.tem.2023.02.004] [Reference Citation Analysis]
3 Stark R, Dempsey H, Kleeman E, Sassi M, Davies J, Zigman JM, Andrews ZB. Hunger signalling in the olfactory bulb primes exploration, food-seeking and peripheral metabolism.. [DOI: 10.1101/2023.01.26.525804] [Reference Citation Analysis]
4 Lusseau D, Kindt-larsen L, van Beest FM. Emergent interactions in the management of multiple threats to the conservation of harbour porpoises. Science of The Total Environment 2023;855:158936. [DOI: 10.1016/j.scitotenv.2022.158936] [Reference Citation Analysis]
5 Puente-ruiz SC, Jais A. Reciprocal signaling between adipose tissue depots and the central nervous system. Front Cell Dev Biol 2022;10:979251. [DOI: 10.3389/fcell.2022.979251] [Reference Citation Analysis]
6 Wang J, Beecher K, Chehrehasa F, Moody H. The limitations of investigating appetite through circuit manipulations: are we biting off more than we can chew? Rev Neurosci 2022. [PMID: 36054842 DOI: 10.1515/revneuro-2022-0072] [Reference Citation Analysis]
7 Alcantara IC, Tapia APM, Aponte Y, Krashes MJ. Acts of appetite: neural circuits governing the appetitive, consummatory, and terminating phases of feeding. Nat Metab 2022;4:836-47. [PMID: 35879462 DOI: 10.1038/s42255-022-00611-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Reed F, Lockie SH, Reichenbach A, Foldi CJ, Andrews ZB. Appetite to learn: An allostatic role for AgRP neurons in the maintenance of energy balance. Current Opinion in Endocrine and Metabolic Research 2022;24:100337. [DOI: 10.1016/j.coemr.2022.100337] [Reference Citation Analysis]
9 Dos-santos RC, Flores RA, de Jesus AA, Rorato R, Mecawi AS, Antunes-rodrigues J, Kagohara Elias LL. Peripheral ghrelin administration prevents the behavioral effects of restraint stress in mice: possible implication of PVNCRH neurons.. [DOI: 10.1101/2022.05.26.493640] [Reference Citation Analysis]
10 Smith NK, Plotkin JM, Grueter BA. Hunger dampens a nucleus accumbens circuit to drive persistent food seeking. Current Biology 2022. [DOI: 10.1016/j.cub.2022.02.034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Robson DN, Li JM. A dynamical systems view of neuroethology: Uncovering stateful computation in natural behaviors. Curr Opin Neurobiol 2022;73:102517. [PMID: 35217311 DOI: 10.1016/j.conb.2022.01.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Ellacott KL. Astrocytes in neural circuits controlling appetite and food intake. Current Opinion in Endocrine and Metabolic Research 2022;22:100313. [DOI: 10.1016/j.coemr.2021.100313] [Reference Citation Analysis]
13 Besnard A, Leroy F. Top-down regulation of motivated behaviors via lateral septum sub-circuits. Mol Psychiatry 2022;27:3119-28. [PMID: 35581296 DOI: 10.1038/s41380-022-01599-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
14 Carter M, Essner R, Goldstein N, Iyer M. Animal Behavior. Guide to Research Techniques in Neuroscience 2022. [DOI: 10.1016/b978-0-12-818646-6.00007-5] [Reference Citation Analysis]
15 Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021;109:3576-93. [PMID: 34582784 DOI: 10.1016/j.neuron.2021.08.036] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
16 Alhadeff AL. The power of hunger. Science 2021;374:547-8. [PMID: 34709901 DOI: 10.1126/science.abl7121] [Reference Citation Analysis]
17 Gouveia A, de Oliveira Beleza R, Steculorum SM. AgRP neuronal activity across feeding-related behaviours. Eur J Neurosci 2021;54:7458-75. [PMID: 34655481 DOI: 10.1111/ejn.15498] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Barajas-Azpeleta R, Tastekin I, Ribeiro C. Neuroscience: How the brain prioritizes behaviors. Curr Biol 2021;31:R1125-7. [PMID: 34637713 DOI: 10.1016/j.cub.2021.08.048] [Reference Citation Analysis]
19 Chakraborty S, Saha AK, Chakraborty R, Saha M, Nama S. HSWOA: An ensemble of hunger games search and whale optimization algorithm for global optimization. Int J Intell Syst 2022;37:52-104. [DOI: 10.1002/int.22617] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
20 Yang Y, Chen H, Heidari AA, Gandomi AH. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications 2021;177:114864. [DOI: 10.1016/j.eswa.2021.114864] [Cited by in Crossref: 270] [Cited by in F6Publishing: 207] [Article Influence: 135.0] [Reference Citation Analysis]
21 Deem JD, Faber CL, Morton GJ. AgRP neurons: Regulators of feeding, energy expenditure, and behavior. FEBS J 2021. [PMID: 34469623 DOI: 10.1111/febs.16176] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
22 Cheriyamkunnel SJ, Rose S, Jacob PF, Blackburn LA, Glasgow S, Moorse J, Winstanley M, Moynihan PJ, Waddell S, Rezaval C. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr Biol 2021:S0960-9822(21)00984-2. [PMID: 34358444 DOI: 10.1016/j.cub.2021.07.029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
23 Heinz DE, Schöttle VA, Nemcova P, Binder FP, Ebert T, Domschke K, Wotjak CT. Exploratory drive, fear, and anxiety are dissociable and independent components in foraging mice. Transl Psychiatry 2021;11:318. [PMID: 34039953 DOI: 10.1038/s41398-021-01458-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
24 Landayan D, Wang BP, Zhou J, Wolf FW. Thirst interneurons that promote water seeking and limit feeding behavior in Drosophila. Elife 2021;10:e66286. [PMID: 34018925 DOI: 10.7554/eLife.66286] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
25 Stincic TL, Bosch MA, Hunker AC, Juarez B, Connors AM, Zweifel LS, Rønnekleiv OK, Kelly MJ. CRISPR knockdown of Kcnq3 attenuates the M-current and increases excitability of NPY/AgRP neurons to alter energy balance. Mol Metab 2021;49:101218. [PMID: 33766732 DOI: 10.1016/j.molmet.2021.101218] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Quarta C, Claret M, Zeltser LM, Williams KW, Yeo GSH, Tschöp MH, Diano S, Brüning JC, Cota D. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat Metab 2021;3:299-308. [PMID: 33633406 DOI: 10.1038/s42255-021-00345-3] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 22.5] [Reference Citation Analysis]
27 Smith NK, Grueter BA. Hunger-driven adaptive prioritization of behavior. FEBS J 2021. [PMID: 33630426 DOI: 10.1111/febs.15791] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
28 Bravo-Rivera H, Rubio Arzola P, Caban-Murillo A, Vélez-Avilés AN, Ayala-Rosario SN, Quirk GJ. Characterizing Different Strategies for Resolving Approach-Avoidance Conflict. Front Neurosci 2021;15:608922. [PMID: 33716644 DOI: 10.3389/fnins.2021.608922] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Hanssen R, Kretschmer AC, Rigoux L, Albus K, Edwin Thanarajah S, Sitnikow T, Melzer C, Cornely OA, Brüning JC, Tittgemeyer M. GLP-1 and hunger modulate incentive motivation depending on insulin sensitivity in humans. Mol Metab 2021;45:101163. [PMID: 33453418 DOI: 10.1016/j.molmet.2021.101163] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
30 Peters KZ, Young AMJ, McCutcheon JE. Distracting stimuli evoke ventral tegmental area responses in rats during ongoing saccharin consumption. Eur J Neurosci 2021;53:1809-21. [PMID: 33426718 DOI: 10.1111/ejn.15108] [Reference Citation Analysis]
31 Lee YH, Kim YB, Kim KS, Song HY, Jang M, Ha D, Park JS, Jung S, Lee J, Kim KM, Cheon D, Baek I, Shin M, Lee EJ, Kim SJ, Choi HJ. Neural Mechanism of Hunger-gated Food-seeking and Evaluating.. [DOI: 10.1101/2020.10.23.352187] [Reference Citation Analysis]
32 Sternson SM. Exploring internal state-coding across the rodent brain. Curr Opin Neurobiol 2020;65:20-6. [PMID: 32950827 DOI: 10.1016/j.conb.2020.08.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
33 Reppucci CJ, Brown LA, Chambers AQ, Veenema AH. Wistar rats and C57BL/6 mice differ in their motivation to seek social interaction versus food in the Social versus Food Preference Test. Physiol Behav 2020;227:113162. [PMID: 32877644 DOI: 10.1016/j.physbeh.2020.113162] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
34 Peters KZ, Young AMJ, Mccutcheon JE. Distracting stimuli evoke ventral tegmental area responses in rats during ongoing saccharin consumption.. [DOI: 10.1101/2020.08.03.228452] [Reference Citation Analysis]
35 Stincic TL, Bosch MA, Hunker AC, Juarez B, Connors AM, Zweifel LS, Rønnekleiv OK, Kelly MJ. CRISPR Knockdown of Kcnq3 Attenuates the M-current in NPY/AgRP Neurons.. [DOI: 10.1101/2020.05.28.122341] [Reference Citation Analysis]