1 |
Zhang T, Wang G, Bao J, Liu C, Li W, Kong Z, Sun X, Li J, Lu R. Fabrication of an Ag-based SERS nanotag for histamine quantitative detection. Talanta 2023;256:124256. [PMID: 36641996 DOI: 10.1016/j.talanta.2023.124256] [Reference Citation Analysis]
|
2 |
Liu B, Wang F, Chao J. Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. Sensors (Basel) 2023;23:3313. [PMID: 36992023 DOI: 10.3390/s23063313] [Reference Citation Analysis]
|
3 |
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core–shell SERS‐based biosensors. Exploration 2023. [DOI: 10.1002/exp.20220072] [Reference Citation Analysis]
|
4 |
Ashraf G, Zhong ZT, Asif M, Aziz A, Iftikhar T, Chen W, Zhao YD. State-of-the-Art Fluorescent Probes: Duplex-Specific Nuclease-Based Strategies for Early Disease Diagnostics. Biosensors (Basel) 2022;12. [PMID: 36551139 DOI: 10.3390/bios12121172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Vilímová I, Hervé-Aubert K, Chourpa I. Formation of miRNA Nanoprobes-Conjugation Approaches Leading to the Functionalization. Molecules 2022;27. [PMID: 36500520 DOI: 10.3390/molecules27238428] [Reference Citation Analysis]
|
6 |
Gu Y, Cao D, Mao Y, Ge S, Li Z, Gu Y, Sun Y, Li L, Cao X. A SERS microfluidic chip based on hpDNA-functioned Au-Ag nanobowl array for efficient simultaneous detection of non-small cell lung cancer-related microRNAs. Microchemical Journal 2022;182:107836. [DOI: 10.1016/j.microc.2022.107836] [Reference Citation Analysis]
|
7 |
Yañez-Aulestia A, Gupta NK, Hernández M, Osorio-Toribio G, Sánchez-González E, Guzmán-Vargas A, Rivera JL, Ibarra IA, Lima E. Gold nanoparticles: current and upcoming biomedical applications in sensing, drug, and gene delivery. Chem Commun (Camb) 2022;58:10886-95. [PMID: 36093914 DOI: 10.1039/d2cc04826d] [Reference Citation Analysis]
|
8 |
Cao X, Ge S, Hua W, Zhou X, Lu W, Gu Y, Li Z, Qian Y. A pump-free and high-throughput microfluidic chip for highly sensitive SERS assay of gastric cancer-related circulating tumor DNA via a cascade signal amplification strategy. J Nanobiotechnology 2022;20:271. [PMID: 35690820 DOI: 10.1186/s12951-022-01481-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Chauhan P, Bhargava A, Kumari R, Ratre P, Tiwari R, Kumar Srivastava R, Yu Goryacheva I, Kumar Mishra P. Surface-enhanced Raman scattering biosensors for detection of oncomiRs in breast cancer. Drug Discov Today 2022:S1359-6446(22)00163-5. [PMID: 35460892 DOI: 10.1016/j.drudis.2022.04.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
10 |
Li MX, Chen Y, Chen ZP, Yu RQ. Label-free and sensitive microRNA detection method based on the locked nucleic acid assisted fishing amplification strategy. Talanta 2022;240:123169. [PMID: 34959073 DOI: 10.1016/j.talanta.2021.123169] [Reference Citation Analysis]
|
11 |
Liu L, Guo J, Xing Y, Wu Z. Ultrasensitive Surface‐Enhanced Raman Scattering (SERS) Detection For miRNA‐182 Based on CdS/MoS 2 @AuNPs Fabricated by Atomic Layer Deposition (ALD). Adv Materials Inter 2022;9:2102221. [DOI: 10.1002/admi.202102221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Li P, Zhou B, Ge M, Jing X, Yang L. Metal coordination induced SERS nanoprobe for sensitive and selective detection of histamine in serum. Talanta 2022;237:122913. [PMID: 34736650 DOI: 10.1016/j.talanta.2021.122913] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|