BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Muhammad M, Huang Q. A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta 2021;227:122188. [PMID: 33714469 DOI: 10.1016/j.talanta.2021.122188] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Ma Q, Yang Y, Yang W, Yang L, Zhang X, Zhang M. Two colors, one-step, self-drive fluorescent strategy for chloramphenicol detection base on DNAzyme cleavage triggered hybridization chain reaction. Spectrochim Acta A Mol Biomol Spectrosc 2023;292:122386. [PMID: 36739663 DOI: 10.1016/j.saa.2023.122386] [Reference Citation Analysis]
2 Zhang A, Zhou Y, Xue F, Peng X, Chen H, Wang H. Exploring the generality of ligands for Silica-Encapsulated nanoclusters as SERS labels. J Colloid Interface Sci 2023;635:43-9. [PMID: 36577354 DOI: 10.1016/j.jcis.2022.12.099] [Reference Citation Analysis]
3 Amador-martínez JD, Flores-lópez NS, Hernandez-martínez AR, Calderón-ayala G, Bocarando-chacon J, Cayetano-castro N, Martínez-suarez F, Leal-pérez JE, Cortez-valadez M, Britto Hurtado R. Experimental and DFT studies of copper nanoparticles as SERS substrates. Appl Phys A 2023;129:254. [DOI: 10.1007/s00339-023-06531-2] [Reference Citation Analysis]
4 Cheng L, Qian J, Ruan D, Chen G, Yang J, Wu H, Liu A. Flexible and Highly Sensitive Sandwich-Structured PDMS with Silver Nanowires and Laser-Induced Graphene for Rapid Residue Detection. ACS Appl Polym Mater 2023. [DOI: 10.1021/acsapm.2c02011] [Reference Citation Analysis]
5 Fang X, Ma J, Gu C, Xiong W, Jiang T. Synchronous enhancement of electromagnetic and chemical effects-induced quantitative adsorptive detection of quercetin based on flexible polymer-silver-ZIF-67 SERS substrate. Sensors and Actuators B: Chemical 2023;378:133176. [DOI: 10.1016/j.snb.2022.133176] [Reference Citation Analysis]
6 Habia MI, Manallah A, Ayadi K. Plasmonic biosensor for the study of blood diseases by analysis of hemoglobin concentration. Opt Quant Electron 2023;55:234. [DOI: 10.1007/s11082-022-04503-z] [Reference Citation Analysis]
7 Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core–shell SERS‐based biosensors. Exploration 2023. [DOI: 10.1002/exp.20220072] [Reference Citation Analysis]
8 Pourmadadi M, Moammeri A, Shamsabadipour A, Moghaddam YF, Rahdar A, Pandey S. Application of Various Optical and Electrochemical Nanobiosensors for Detecting Cancer Antigen 125 (CA-125): A Review. Biosensors (Basel) 2023;13. [PMID: 36671934 DOI: 10.3390/bios13010099] [Reference Citation Analysis]
9 Amin MU, Li L, Zhang R, Fang J. Rapid and ultrasensitive solution-based SERS detection of drug additives in aquaculture by using polystyrene sulfonate modified gold nanobipyramids. Talanta 2023;251:123800. [DOI: 10.1016/j.talanta.2022.123800] [Reference Citation Analysis]
10 Singh N, Shrivastav AM, Vashistha N, Abdulhalim I. 3D plasmonic hot spots network via gold decorated deep micro-porous silicon exhibiting ultrahigh-SERS enhancement with application to explosives detection. Sensors and Actuators B: Chemical 2023;374:132813. [DOI: 10.1016/j.snb.2022.132813] [Reference Citation Analysis]
11 Akgönüllü S, Denizli A. Recent advances in optical biosensing approaches for biomarkers detection. Biosensors and Bioelectronics: X 2022;12:100269. [DOI: 10.1016/j.biosx.2022.100269] [Reference Citation Analysis]
12 Liu C, Xu D, Dong X, Huang Q. A review: Research progress of SERS-based sensors for agricultural applications. Trends in Food Science & Technology 2022;128:90-101. [DOI: 10.1016/j.tifs.2022.07.012] [Reference Citation Analysis]
13 Zhao J, Wang J, Liu Y, Han XX, Xu B, Ozaki Y, Zhao B. Detection of prostate cancer biomarkers via a SERS-based aptasensor. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114660] [Reference Citation Analysis]
14 Sun Z, Zhou Q, Yang Y, Li L, Yu M, Li H, Li A, Wang X, Jiang Y. Identification and ultrasensitive photoelectrochemical detection of LncNR_040117: a biomarker of recurrent miscarriage and antiphospholipid antibody syndrome in platelet-derived microparticles. J Nanobiotechnology 2022;20:396. [PMID: 36045427 DOI: 10.1186/s12951-022-01608-1] [Reference Citation Analysis]
15 Chen P, Lu Y, Tangsuwanjinda S, Chung R, Sakthivel R, Cheng H. Irradiation-Induced Synthesis of Ag/ZnO Nanostructures as Surface-Enhanced Raman Scattering Sensors for Sensitive Detection of the Pesticide Acetamiprid. Sensors 2022;22:6406. [DOI: 10.3390/s22176406] [Reference Citation Analysis]
16 Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022;:1-45. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Reference Citation Analysis]
17 Zavyalova E, Tikhonova D, Zhdanov G, Rudakova E, Alferova V, Moiseenko A, Kamzeeva P, Khrulev A, Zalevsky A, Arutyunyan A, Novikov R, Kukushkin V, Aralov A. SERS-based biosensor with Raman-active external responsive element for rapid determination of adenosine monophosphate. Analytica Chimica Acta 2022;1221:340140. [DOI: 10.1016/j.aca.2022.340140] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Duan N, Yao T, Li C, Wang Z, Wu S. Surface-enhanced Raman spectroscopy relying on bimetallic Au–Ag nanourchins for the detection of the food allergen β-lactoglobulin. Talanta 2022;245:123445. [DOI: 10.1016/j.talanta.2022.123445] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Lv S, Zeng C, Yu Z, Zheng J, Wang Y, Shao Y, Zhou X. Recent Advances in Single-Molecule Sensors Based on STM Break Junction Measurements. Biosensors 2022;12:565. [DOI: 10.3390/bios12080565] [Reference Citation Analysis]
20 Yang Y, Wu D, Liu J, Su Z, Li L, Wu Y, Li G. High-efficiency enzyme-free catalyzed hairpin assembly-mediated homogeneous SERS and naked-eyes dual-mode assay for ultrasensitive and portable detection of mycotoxin. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114526] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Given FM, Stanborough T, Waterland MR, Crittenden DL. DeltaPCA: A statistically robust method for analysing surface-enhanced Raman spectra for quantitative analyte detection. Vibrational Spectroscopy 2022;121:103389. [DOI: 10.1016/j.vibspec.2022.103389] [Reference Citation Analysis]
22 Chen Q, Tian R, Liu G, Wen Y, Bian X, Luan D, Wang H, Lai K, Yan J. Fishing unfunctionalized SERS tags with DNA hydrogel network generated by ligation-rolling circle amplification for simple and ultrasensitive detection of kanamycin. Biosens Bioelectron 2022;207:114187. [PMID: 35325717 DOI: 10.1016/j.bios.2022.114187] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
23 Almehmadi LM, Valsangkar VA, Halvorsen K, Zhang Q, Sheng J, Lednev IK. Surface-enhanced Raman spectroscopy for drug discovery: peptide-RNA binding. Anal Bioanal Chem 2022. [PMID: 35764806 DOI: 10.1007/s00216-022-04190-5] [Reference Citation Analysis]
24 Shobeiri SS, Rezaee M, Pordel S, Haghnnavaz N, Dashti M, Moghadam M, Sankian M. Anti-IL-17A ssDNA aptamer ameliorated psoriasis skin lesions in the imiquimod-induced psoriasis mouse model. Int Immunopharmacol 2022;110:108963. [PMID: 35724603 DOI: 10.1016/j.intimp.2022.108963] [Reference Citation Analysis]
25 Bruno JG. Applications in Which Aptamers Are Needed or Wanted in Diagnostics and Therapeutics. Pharmaceuticals 2022;15:693. [DOI: 10.3390/ph15060693] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Liu B, Zheng S, Tang H, Liu Q, Li H, Gao B, Zhao X, Sun F. Highly sensitive detection of free testosterone assisted by magnetic nanobeads and gap-enhanced SERS nanotags. Colloids Surf B Biointerfaces 2022;214:112460. [PMID: 35298951 DOI: 10.1016/j.colsurfb.2022.112460] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Javed Ansari M, Olegovich Bokov D, Abdalkareem Jasim S, Rudiansyah M, Suksatan W, Yasin G, Chupradit S, Alkaim AF, Fakri Mustafa Y, Imad Tarek D. Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. Journal of Molecular Liquids 2022;354:118895. [DOI: 10.1016/j.molliq.2022.118895] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Chauhan P, Bhargava A, Kumari R, Ratre P, Tiwari R, Kumar Srivastava R, Yu Goryacheva I, Kumar Mishra P. Surface-enhanced Raman scattering biosensors for detection of oncomiRs in breast cancer. Drug Discov Today 2022:S1359-6446(22)00163-5. [PMID: 35460892 DOI: 10.1016/j.drudis.2022.04.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Hua Y, Ma J, Li D, Wang R. DNA-Based Biosensors for the Biochemical Analysis: A Review. Biosensors (Basel) 2022;12:183. [PMID: 35323453 DOI: 10.3390/bios12030183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Gavrilaș S, Ursachi CȘ, Perța-Crișan S, Munteanu FD. Recent Trends in Biosensors for Environmental Quality Monitoring. Sensors (Basel) 2022;22:1513. [PMID: 35214408 DOI: 10.3390/s22041513] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
31 Chen J, Liu J, Wang J, Zhang Y, Wang X, Zhou N. Fluorescent biosensor based on FRET and catalytic hairpin assembly for sensitive detection of polysialic acid by using a new screened DNA aptamer. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123282] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Banciu RM, Numan N, Vasilescu A. Optical biosensing of lysozyme. Journal of Molecular Structure 2022;1250:131639. [DOI: 10.1016/j.molstruc.2021.131639] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Maria João Oliveira, Ana Dalot, Elvira Fortunato, Rodrigo Martins, Hugh J. Byrne, Ricardo Franco, Hugo Águas. Microfluidic SERS devices: brightening the future of bioanalysis. Discov Mater 2022;2:12. [PMID: 36536830 DOI: 10.1007/s43939-022-00033-3] [Reference Citation Analysis]
34 Zhang N, Li J, Liu B, Zhang D, Zhang C, Guo Y, Chu X, Wang W, Wang H, Yan X, Li Z. Signal enhancing strategies in aptasensors for the detection of small molecular contaminants by nanomaterials and nucleic acid amplification. Talanta 2022;236:122866. [PMID: 34635248 DOI: 10.1016/j.talanta.2021.122866] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 15.0] [Reference Citation Analysis]
35 Xu D, Zhang Y, Zhang S, Yang W, Wang Z, Li J. Copper nanoleaves SERS substrates with high surface roughness for sensitive detection crystal violet and rhodamine 6G. Optics & Laser Technology 2022;145:107502. [DOI: 10.1016/j.optlastec.2021.107502] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
36 Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022;189:443. [PMID: 36350388 DOI: 10.1007/s00604-022-05533-w] [Reference Citation Analysis]
37 San Juan AMT, Chavva SR, Tu D, Tircuit M, Coté G, Mabbott S. Synthesis of SERS-active core–satellite nanoparticles using heterobifunctional PEG linkers. Nanoscale Adv 2021;4:258-67. [DOI: 10.1039/d1na00676b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Lin C, Li L, Feng J, Zhang Y, Lin X, Guo H, Li R. Aptamer-modified magnetic SERS substrate for label-based determination of cardiac troponin I. Mikrochim Acta 2021;189:22. [PMID: 34882274 DOI: 10.1007/s00604-021-05121-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Shobeiri SS, Khorrami M, Sankian M. Plaque-type psoriasis inhibitors. Int Immunopharmacol 2021;:108326. [PMID: 34782274 DOI: 10.1016/j.intimp.2021.108326] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Perdomo SA, Marmolejo-tejada JM, Jaramillo-botero A. Review—Bio-Nanosensors: Fundamentals and Recent Applications. J Electrochem Soc 2021;168:107506. [DOI: 10.1149/1945-7111/ac2972] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
41 Wang L, Huang J, Su MJ, Wu JD, Liu W. AgNPs decorated 3D bionic silicon nanograss arrays pattern with high-density hot-spots for SERS sensing via green galvanic displacement without additives. RSC Adv 2021;11:27152-9. [PMID: 35480648 DOI: 10.1039/d1ra04874k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Calderon I, Guerrini L, Alvarez-Puebla RA. Targets and Tools: Nucleic Acids for Surface-Enhanced Raman Spectroscopy. Biosensors (Basel) 2021;11:230. [PMID: 34356701 DOI: 10.3390/bios11070230] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
43 Li S, Cheng Y, Chen S, Qin M, Li P, Yang L. In-situ SERS readout strategy to improve the reliability of beta-galactosidase activity assay based on X-gal staining in shortening incubation times. Talanta 2021;234:122689. [PMID: 34364487 DOI: 10.1016/j.talanta.2021.122689] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
44 Zhao D, Liu M, Li J, Xiao D, Peng S, He Q, Sun Y, Li Q, Lin Y. Angiogenic Aptamer-Modified Tetrahedral Framework Nucleic Acid Promotes Angiogenesis In Vitro and In Vivo. ACS Appl Mater Interfaces 2021;13:29439-49. [PMID: 34137587 DOI: 10.1021/acsami.1c08565] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
45 Lu Y, Tan Y, Xiao Y, Li Z, Sheng E, Dai Z. A silver@gold nanoparticle tetrahedron biosensor for multiple pesticides detection based on surface-enhanced Raman scattering. Talanta 2021;234:122585. [PMID: 34364414 DOI: 10.1016/j.talanta.2021.122585] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
46 Liu Y, Zhu W, Hu J, Shen A. Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application. Nanoscale Adv 2021;3:6568-79. [DOI: 10.1039/d1na00464f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]