BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang S, Chen C, Qin X, Zhang Q, Liu J, Zhu J, Gao Y, Li L, Huang W. Ultrasensitive detection of trypsin activity and inhibitor screening based on the electron transfer between phosphorescence copper nanocluster and cytochrome c. Talanta 2018;189:92-9. [PMID: 30086981 DOI: 10.1016/j.talanta.2018.06.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Yin C, Chen L, Niu N. Nitrogen-doped carbon quantum dots fabricated from cellulolytic enzyme lignin and its application to the determination of cytochrome c and trypsin. Anal Bioanal Chem 2021. [PMID: 34212211 DOI: 10.1007/s00216-021-03496-0] [Reference Citation Analysis]
2 Liu Y, Zhang F, He X, Ma P, Huang Y, Tao S, Sun Y, Wang X, Song D. A novel and simple fluorescent sensor based on AgInZnS QDs for the detection of protamine and trypsin and imaging of cells. Sensors and Actuators B: Chemical 2019;294:263-9. [DOI: 10.1016/j.snb.2019.05.057] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
3 Bao Q, Lin D, Gao Y, Wu L, Fu J, Galaa K, Lin X, Lin L. Ultrasensitive off-on-off fluorescent nanosensor for protamine and trypsin detection based on inner-filter effect between N,S-CDs and gold nanoparticles. Microchemical Journal 2021;168:106409. [DOI: 10.1016/j.microc.2021.106409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Yao Z, Liu Y, Diao Y, Hu G, Qian Y, Li Z. Fluorometry detection for trypsin via inner filter effect between cytochrome C and in-situ formed fluorescent thiochrome. Talanta 2021;234:122614. [PMID: 34364423 DOI: 10.1016/j.talanta.2021.122614] [Reference Citation Analysis]
5 Dong Z, Cheng L, Zhang P, Zhao G. Label-free analytical performances of a peptide-based QCM biosensor for trypsin. Analyst 2020;145:3329-38. [DOI: 10.1039/d0an00308e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Melikishvili S, Dizon M, Hianik T. Application of high-resolution ultrasonic spectroscopy for real-time monitoring of trypsin activity in β-casein solution. Food Chem 2021;337:127759. [PMID: 32777568 DOI: 10.1016/j.foodchem.2020.127759] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Chen C, Geng F, Wang Y, Yu H, Li L, Yang S, Liu J, Huang W. Design of a nanoswitch for sequentially multi-species assay based on competitive interaction between DNA-templated fluorescent copper nanoparticles, Cr3+ and pyrophosphate and ALP. Talanta 2019;205:120132. [DOI: 10.1016/j.talanta.2019.120132] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
8 Geng F, Zou C, Liu J, Zhang Q, Guo X, Fan Y, Yu H, Yang S, Liu Z, Li L. Development of luminescent nanoswitch for sensing of alkaline phosphatase in human serum based onAl3+-PPi interaction and Cu NCs with AIE properties. Analytica Chimica Acta 2019;1076:131-7. [DOI: 10.1016/j.aca.2019.05.026] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
9 Kaur J, Singh PK. Trypsin Detection Strategies: A Review. Critical Reviews in Analytical Chemistry. [DOI: 10.1080/10408347.2020.1846490] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Lucas E, Knoblauch R, Combs-Bosse M, Broedel SE Jr, Geddes CD. Low-concentration trypsin detection from a metal-enhanced fluorescence (MEF) platform: Towards the development of ultra-sensitive and rapid detection of proteolytic enzymes. Spectrochim Acta A Mol Biomol Spectrosc 2020;228:117739. [PMID: 31753644 DOI: 10.1016/j.saa.2019.117739] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Hou S, Feng T, Zhao N, Zhang J, Wang H, Liang N, Zhao L. A carbon nanoparticle-peptide fluorescent sensor custom-made for simple and sensitive detection of trypsin. J Pharm Anal 2020;10:482-9. [PMID: 33133732 DOI: 10.1016/j.jpha.2020.08.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Cheng H, Zhao Y, Xu H, Hu Y, Zhang L, Song G, Yao Z. Rapid and visual detection of protamine based on ionic self-assembly of a water soluble perylene diimide derivative. Dyes and Pigments 2020;180:108456. [DOI: 10.1016/j.dyepig.2020.108456] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
13 Liu H, Yin H, Dong Y, Ding H, Chu X. Electrochemiluminescence resonance energy transfer between luminol and black phosphorus nanosheets for the detection of trypsin via the “off–on–off” switch mode. Analyst 2020;145:2204-11. [DOI: 10.1039/d0an00156b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
14 Rahmati Z, Roushani M, Hosseini H. Amorphous Ni(OH)2 nano-boxes as a high performance substrate for aptasensor application. Measurement 2022;189:110649. [DOI: 10.1016/j.measurement.2021.110649] [Reference Citation Analysis]
15 Yuan N, Jia L, Zhu J. Label-free Fluorescence Turn on Trypsin Assay Based on Gemini Surfactant/heparin/Nile Red Supramolecular Assembly. J Fluoresc 2021. [PMID: 34319555 DOI: 10.1007/s10895-021-02785-2] [Reference Citation Analysis]
16 Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. Nanoscale 2021;13:6283-340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]