BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen H, Fang A, Zhang Y, Yao S. Silver triangular nanoplates as an high efficiently FRET donor-acceptor of upconversion nanoparticles for ultrasensitive "Turn on-off" protamine and trypsin sensor. Talanta 2017;174:148-55. [PMID: 28738561 DOI: 10.1016/j.talanta.2017.06.006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Chen Y, Lin Z, Miao C, Cai Q, Li F, Zheng Z, Lin X, Zheng Y, Weng S. A simple fluorescence assay for trypsin through a protamine-induced carbon quantum dot-quenching aggregation platform. RSC Adv 2020;10:26765-70. [DOI: 10.1039/d0ra03970e] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
2 Marchioni M, Jouneau P, Chevallet M, Michaud-soret I, Deniaud A. Silver nanoparticle fate in mammals: Bridging in vitro and in vivo studies. Coordination Chemistry Reviews 2018;364:118-36. [DOI: 10.1016/j.ccr.2018.03.008] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
3 Zhao W, Li B, Xu S, Zhu Y, Liu X. A fabrication strategy for protein sensors based on an electroactive molecularly imprinted polymer: Cases of bovine serum albumin and trypsin sensing. Anal Chim Acta 2020;1117:25-34. [PMID: 32408951 DOI: 10.1016/j.aca.2020.04.023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Huang Q, Zhang J, Li W, Fu Y. A heparin-modified palladium nanozyme for photometric determination of protamine. Mikrochim Acta 2020;187:226. [PMID: 32170394 DOI: 10.1007/s00604-020-4208-9] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Zhou Z, Liu W, Wang Y, Ding F, Liu X, Zhao Q, Zou P, Wang X, Rao H. A fluorometric and colorimetric method for determination of trypsin by exploiting the gold nanocluster-induced aggregation of hemoglobin-coated gold nanoparticles. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3380-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
6 He W, Weng W, Sun X, Liu B, Shen J. Novel Plasmon-Enhanced Fluorescence Sensing Platform Based on rGO/MoS 2 Films for Ultrasensitive Detection of Protamine and Heparin. ACS Sustainable Chem Eng 2020;8:9988-97. [DOI: 10.1021/acssuschemeng.0c00905] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
7 Du H, Zhang L, Mao W, Zhao Y, Huang H, Xiao Y, Zhang Y, He X, Wang K. Ultrafine fluorene-pyridine oligoelectrolyte nanoparticles for supersensitive fluorescence sensing of heparin and protamine. Chem Commun (Camb) 2021;57:8304-7. [PMID: 34318803 DOI: 10.1039/d1cc01969d] [Reference Citation Analysis]
8 Jouyban A, Rahimpour E. Sensors/nanosensors based on upconversion materials for the determination of pharmaceuticals and biomolecules: An overview. Talanta 2020;220:121383. [PMID: 32928407 DOI: 10.1016/j.talanta.2020.121383] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhang S, Chen C, Qin X, Zhang Q, Liu J, Zhu J, Gao Y, Li L, Huang W. Ultrasensitive detection of trypsin activity and inhibitor screening based on the electron transfer between phosphorescence copper nanocluster and cytochrome c. Talanta 2018;189:92-9. [PMID: 30086981 DOI: 10.1016/j.talanta.2018.06.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
10 Xue F, Qu F, Han W, Xia L, You J. Aggregation-induced emission enhancement of gold nanoclusters triggered by silicon nanoparticles for ratiometric detection of protamine and trypsin. Anal Chim Acta 2019;1046:170-8. [PMID: 30482296 DOI: 10.1016/j.aca.2018.09.033] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
11 Li X, Yan Y, Cheng X, Guo W, Peng Y. Binding behaviors and kinetics studies on the interaction of silver nanoparticles with trypsin. International Journal of Biological Macromolecules 2018;114:836-43. [DOI: 10.1016/j.ijbiomac.2018.03.172] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
12 Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022;300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Reference Citation Analysis]
13 Chen S, Fu J, Zhou S, Wu X, Tang S, Zhao P, Zhang Z. An eco-friendly near infrared fluorescence molecularly imprinted sensor based on zeolite imidazolate framework-8 for rapid determination of trace trypsin. Microchemical Journal 2021;168:106449. [DOI: 10.1016/j.microc.2021.106449] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
14 Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021;26:3228. [PMID: 34072160 DOI: 10.3390/molecules26113228] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Du Q, Jing Z, Qi H, Zuo L, Zhou L, He H, Sun Z. Visual Recognition and Detection of Clindamycin by Au@Ag Core-Shell Nanoparticles. ACS Omega 2021;6:14260-7. [PMID: 34124449 DOI: 10.1021/acsomega.1c01028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
16 Yao J, Huang C, Liu C, Yang M. Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy. Talanta 2020;208:120157. [DOI: 10.1016/j.talanta.2019.120157] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 8.5] [Reference Citation Analysis]
17 Xu S, Zhang F, Xu L, Liu X, Ma P, Sun Y, Wang X, Song D. A fluorescence resonance energy transfer biosensor based on carbon dots and gold nanoparticles for the detection of trypsin. Sensors and Actuators B: Chemical 2018;273:1015-21. [DOI: 10.1016/j.snb.2018.07.023] [Cited by in Crossref: 35] [Cited by in F6Publishing: 17] [Article Influence: 8.8] [Reference Citation Analysis]
18 Yang J, Song N, Jia Q. Electrostatically controlled fluorometric assay for differently charged biotargets based on the use of silver/copper bimetallic nanoclusters modified with polyethyleneimine and graphene oxide. Microchim Acta 2019;186. [DOI: 10.1007/s00604-018-3179-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
19 Tan Q, Zhang R, Kong W, Qu F, Lu L. Ascorbic Acid-Loaded Apoferritin-Assisted Carbon Dot-MnO 2 Nanocomposites for the Selective and Sensitive Detection of Trypsin. ACS Appl Bio Mater 2018;1:777-82. [DOI: 10.1021/acsabm.8b00235] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
20 Wu P, Hu F, Wang R, Gao L, Huang T, Xin Y, He H. Colorimetric chiral recognition of D/L-phenylalanine based on triangular silver nanoplates. Amino Acids 2018;50:1269-78. [PMID: 29961142 DOI: 10.1007/s00726-018-2604-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
21 Kaur J, Singh PK. Trypsin Detection Strategies: A Review. Critical Reviews in Analytical Chemistry. [DOI: 10.1080/10408347.2020.1846490] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Hou S, Feng T, Zhao N, Zhang J, Wang H, Liang N, Zhao L. A carbon nanoparticle-peptide fluorescent sensor custom-made for simple and sensitive detection of trypsin. J Pharm Anal 2020;10:482-9. [PMID: 33133732 DOI: 10.1016/j.jpha.2020.08.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Choi J, Choi J. Metal-Enhanced Fluorescence by Bifunctional Au Nanoparticles for Highly Sensitive and Simple Detection of Proteolytic Enzyme. Nano Lett 2020;20:7100-7. [DOI: 10.1021/acs.nanolett.0c02343] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]