1 |
Hu L, Shi T, Chen J, Cui Q, Yu H, Wu D, Ma H, Wei Q, Ju H. Dual-quenching electrochemiluminescence resonance energy transfer system from CoPd nanoparticles enhanced porous g-C(3)N(4) to FeMOFs-sCuO for neuron-specific enolase immunosensing. Biosens Bioelectron 2023;226:115132. [PMID: 36791617 DOI: 10.1016/j.bios.2023.115132] [Reference Citation Analysis]
|
2 |
Zhu X, Shan J, Dai L, Shi F, Wang J, Wang H, Li Y, Wu D, Ma H, Wei Q, Ju H. PB@PDA nanocomposites as nanolabels and signal reporters for separate-type cathodic photoelectrochemical immunosensors in the detection of carcinoembryonic antigens. Talanta 2023;254:124134. [PMID: 36450179 DOI: 10.1016/j.talanta.2022.124134] [Reference Citation Analysis]
|
3 |
Jiao M, Fan X, Wang Z, Wu K, Deng A, Li J. Electrochemiluminescence resonance energy transfer system based on ox-MWCNTs-IGQDs and PdAg nanosheets for the detection of 5-fluorouracil in serum. Microchemical Journal 2022;183:108066. [DOI: 10.1016/j.microc.2022.108066] [Reference Citation Analysis]
|
4 |
Yin J, Yan X, Zhu M. First-Principles Study on C3N4 Intermediate Band Materials. J Electron Mater . [DOI: 10.1007/s11664-022-09996-8] [Reference Citation Analysis]
|
5 |
Li S, Luo J, Wu Y, Ma X, Pang C, Wang M, Luo J, Zhang C, Tan G. Determination of trichlorfon using a molecularly imprinted electrochemiluminescence sensor on multi-walled carbon nanotubes decorated with silver nanoparticles. Mikrochim Acta 2022;189:347. [PMID: 36001192 DOI: 10.1007/s00604-022-05452-w] [Reference Citation Analysis]
|
6 |
Wang Y, Kan X. RuSiO 2 @Ag Core–Shell Nanoparticles for Plasmon Resonance Energy Transfer-Based Electrochemiluminescence Sensing of Glucose and Adenosine Triphosphate. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02415] [Reference Citation Analysis]
|
7 |
Cao JT, Fu YZ, Wang YL, Zhang HD, Liu XM, Ren SW, Liu YM. Liposome-assisted chemical redox cycling strategy for advanced signal amplification: A proof-of-concept toward sensitive electrochemiluminescence immunoassay. Biosens Bioelectron 2022;214:114514. [PMID: 35780536 DOI: 10.1016/j.bios.2022.114514] [Reference Citation Analysis]
|
8 |
Gupta N, Todi K, Narayan T, Malhotra B. Graphitic carbon nitride-based nanoplatforms for biosensors: design strategies and applications. Materials Today Chemistry 2022;24:100770. [DOI: 10.1016/j.mtchem.2021.100770] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
9 |
Liu F, Du F, Yuan F, Quan S, Guan Y, Xu G. Electrochemiluminescence bioassays based on carbon nitride nanomaterials and 2D transition metal carbides. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.100981] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
10 |
Zhang H, Wu K, Jiao E, Liu Y, Shi J, Lu M. Self-assembled supramolecule for synthesizing highly thermally conductive Cellulose/Carbon nitride nanocomposites with improved flame retardancy. J Colloid Interface Sci 2022;608:2560-70. [PMID: 34794805 DOI: 10.1016/j.jcis.2021.10.177] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
11 |
Balraj G, Gurrapu R, Anil Kumar A, Sumalatha V, Ayodhya D. Facile synthesis and characterization of noble metals decorated g-C3N4 (g-C3N4/Pt and g-C3N4/Pd) nanocomposites for efficient photocatalytic production of Schiff bases. Results in Chemistry 2022;4:100597. [DOI: 10.1016/j.rechem.2022.100597] [Reference Citation Analysis]
|
12 |
Liu X, Wang Y, Ren S, Cao J, Liu Y. H2O2-activated independently bidirectional regulation for a sensitive and accurate electrochemiluminescence ratiometric analysis. Analyst 2022;147:2508-2514. [DOI: 10.1039/d2an00601d] [Reference Citation Analysis]
|
13 |
Sanjeev K, Esokkiya A, Sudalaimani S, Giribabu K. Graphitic carbon nitride for sensors. Nanoscale Graphitic Carbon Nitride 2022. [DOI: 10.1016/b978-0-12-823034-3.00007-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Wang Y, Wang H, Cai L, Liu C, Zhang B, Fang G, Wang S. A novel electrochemiluminescence sensor based on MXene and sodium ascorbate coordinated amplification CNNS signal strategy for ultrasensitive and selective determination of histamine. Sensors and Actuators B: Chemical 2021;349:130790. [DOI: 10.1016/j.snb.2021.130790] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
15 |
Zhao B, Luo Y, Qu X, Hu Q, Zou J, He Y, Liu Z, Zhang Y, Bao Y, Wang W, Niu L. Graphite-like Carbon Nitride Nanotube for Electrochemiluminescence Featuring High Efficiency, High Stability, and Ultrasensitive Ion Detection Capability. J Phys Chem Lett 2021;12:11191-8. [PMID: 34761929 DOI: 10.1021/acs.jpclett.1c02824] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
16 |
Liu H, Liu Z, Yi J, Ma D, Xia F, Tian D, Zhou C. A dual-signal electroluminescence aptasensor based on hollow Cu/Co-MOF-luminol and g-C3N4 for simultaneous detection of acetamiprid and malathion. Sensors and Actuators B: Chemical 2021;331:129412. [DOI: 10.1016/j.snb.2020.129412] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
|
17 |
Li P, Ma G, Wu K, Deng A, Li J. An electrochemiluminescence energy resonance transfer system for highly sensitive detection of brombuterol. Talanta 2021;223:121687. [PMID: 33303140 DOI: 10.1016/j.talanta.2020.121687] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
18 |
Zou R, Teng X, Lin Y, Lu C. Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors. TrAC Trends in Analytical Chemistry 2020;132:116054. [DOI: 10.1016/j.trac.2020.116054] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
|