BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Turan E, Şahin F, Suludere Z, Tümtürk H. A fluoroimmunodiagnostic nanoplatform for thyroglobulin detection based on fluorescence quenching signal. Sensors and Actuators B: Chemical 2019;300:127052. [DOI: 10.1016/j.snb.2019.127052] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhu Y, Zhu Y, Cao T, Liu X, Liu X, Yan Y, Shi Y, Wang J. Ferritin-based nanomedicine for disease treatment. Medical Review 2023;0. [DOI: 10.1515/mr-2023-0001] [Reference Citation Analysis]
2 Zhang H, Lin Z, Li Y, Lin Z, Yang S, Qiu B, Yu M. Highly sensitive detection of thyroglobulin based on sandwich-type electrochemical immunoassay. Anal Sci 2023. [PMID: 36877338 DOI: 10.1007/s44211-023-00305-9] [Reference Citation Analysis]
3 Su P, Yu L, Yuan M, Wang L, Sun M, Hu W, Tan H, Wang S. Dye-encapsulated metal–organic framework composites for highly sensitive and selective sensing of oxytetracycline based on ratiometric fluorescence. Chem Pap 2022. [DOI: 10.1007/s11696-022-02629-8] [Reference Citation Analysis]
4 Srivastava J, Singh RS, Singh M. Design of EQCM-MIP sensing matrix for highly specific and sensitive detection of thyroglobulin. Biosensors and Bioelectronics: X 2022;11:100154. [DOI: 10.1016/j.biosx.2022.100154] [Reference Citation Analysis]
5 Kim H, Kim H, Park J, Lee S. High-performance biosensor using a sandwich assay via antibody-conjugated gold nanoparticles and fiber-optic localized surface plasmon resonance. Analytica Chimica Acta 2022;1213:339960. [DOI: 10.1016/j.aca.2022.339960] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Kim H, Bae S, Park J, Lee S. Detection limit enhancement of fiber optic localized surface plasmon resonance biosensor by increased scattering efficiency and reduced background signal. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;629:127439. [DOI: 10.1016/j.colsurfa.2021.127439] [Reference Citation Analysis]
7 Ghazy E, Kumar A, Barani M, Kaur I, Rahdar A, Behl T. Scrutinizing the therapeutic and diagnostic potential of nanotechnology in thyroid cancer: Edifying drug targeting by nano-oncotherapeutics. Journal of Drug Delivery Science and Technology 2021;61:102221. [DOI: 10.1016/j.jddst.2020.102221] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
8 Zhu C, Li L, Fang S, Zhao Y, Zhao L, Yang G, Qu F. Selection and characterization of an ssDNA aptamer against thyroglobulin. Talanta 2021;223:121690. [PMID: 33303143 DOI: 10.1016/j.talanta.2020.121690] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
9 Wang X, Huang K, Cui H, Zhang H, Zeng L, Zhou Y, Jing T. Label-free determination of thyroglobulin using template-probe double imprinted composites. Sensors and Actuators B: Chemical 2020;313:128028. [DOI: 10.1016/j.snb.2020.128028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
10 Petri L, Szijj PA, Kelemen Á, Imre T, Gömöry Á, Lee MTW, Hegedűs K, Ábrányi-balogh P, Chudasama V, Keserű GM. Cysteine specific bioconjugation with benzyl isothiocyanates. RSC Adv 2020;10:14928-36. [DOI: 10.1039/d0ra02934c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]