1 |
Cortés P, Castroagudín M, Kesternich V, Pérez-Fehrmann M, Carmona E, Zaragoza G, Vizcarra A, Hernández-Saravia LP, Nelson R. Ligand influence in electrocatalytic properties of Cu(II) triazole complexes for hydrogen peroxide detection in aqueous media. Dalton Trans 2023;52:1476-86. [PMID: 36645272 DOI: 10.1039/d2dt03549a] [Reference Citation Analysis]
|
2 |
Yanase T, Okuda-Shimazaki J, Asano R, Ikebukuro K, Sode K, Tsugawa W. Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System. Int J Mol Sci 2023;24. [PMID: 36768169 DOI: 10.3390/ijms24031837] [Reference Citation Analysis]
|
3 |
Sheikholeslam M, Nanda P, Sanati A, Pritzker M, Chen P. Direct Electrochemistry of Hemoglobin / Peptide-Carbon Nanotube Modified Electrode for Hydrogen Peroxide Biosensing. Materials Letters 2022. [DOI: 10.1016/j.matlet.2022.133799] [Reference Citation Analysis]
|
4 |
Hwang C, Lee W, Kim SD, Park S, Kim JH. Recent Advances in Biosensor Technologies for Point-of-Care Urinalysis. Biosensors 2022;12:1020. [DOI: 10.3390/bios12111020] [Reference Citation Analysis]
|
5 |
Yuliang Zhao, Hongyu Zhang, Yang Li, Xiaoai Wang, Liang Zhao, Jianghong Xu, Zhikun Zhan, Guanglie Zhang, Wen Jung Li. Glycated Hemoglobin Electrochemical Immunosensor Based on Screen-Printed Electrode. Biosensors (Basel) 2022;12:902. [PMID: 36291040 DOI: 10.3390/bios12100902] [Reference Citation Analysis]
|
6 |
Chen P, Wu J, Fei H, He H, Cao S, Zuo L, Jin Y, Zhang L, Du S. Acoustofluidics-manipulated triple-emission fluorescent nanoprobe aggregates with multicolor-variation for colorimetric quantitative assay. Chemical Engineering Journal 2022;441:135976. [DOI: 10.1016/j.cej.2022.135976] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Li W, Miao Y, Zheng Y, Zhang K, Yao J. Nb 2 CT x MXene Integrated Tapered Microfiber Based on Light-Controlled Light for Ultra-Sensitive and Wide-Range Hemoglobin Detection. IEEE Sensors J 2022;22:11456-62. [DOI: 10.1109/jsen.2022.3174116] [Reference Citation Analysis]
|
8 |
Ye H, Liu Y, Xie W, Lin X, Pan H. Ag nanoparticles/PbTiO3 with in-situ photocatalytic process and its application in an ultra-sensitive molecularly imprinted hemoglobin detection. Colloids Surf B Biointerfaces 2022;217:112641. [PMID: 35724600 DOI: 10.1016/j.colsurfb.2022.112641] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Pham ATT, Tohl D, Wallace A, Hu Q, Li J, Reynolds KJ, Tang Y. Developing a fluorescent sensing based portable medical open-platform - a case study for albuminuria measurement in chronic kidney disease screening and monitoring. Sensing and Bio-Sensing Research 2022. [DOI: 10.1016/j.sbsr.2022.100504] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
10 |
Wang J, Zhou L, Bei J, Xie M, Zhu X, Chen T, Wang X, Du Y, Yao Y. An specific photoelectrochemical sensor based on pillar[5]arenes functionalized gold nanoparticles and bismuth oxybromide nanoflowers for bovine hemoglobin recognition. J Colloid Interface Sci 2022;620:187-98. [PMID: 35421754 DOI: 10.1016/j.jcis.2022.04.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
11 |
Hao Z, Huang C, Zhao C, Kospan A, Wang Z, Li F, Wang H, Zhao X, Pan Y, Liu S. Ultrasensitive Graphene-Based Nanobiosensor for Rapid Detection of Hemoglobin in Undiluted Biofluids. ACS Appl Bio Mater 2022. [PMID: 35380036 DOI: 10.1021/acsabm.2c00031] [Reference Citation Analysis]
|
12 |
Li D, Yan J, Fang C, Tu Y. Label-free detection of hemoglobin using GSH-AuAg NPs as fluorescent probe by dual quenching mechanism. Sensors and Actuators B: Chemical 2022;355:131291. [DOI: 10.1016/j.snb.2021.131291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Fatima B, Saeed U, Hussain D, Jawad SE, Rafiq HS, Majeed S, Manzoor S, Qadir SY, Ashiq MN, Najam-Ul-Haq M. Facile hydrothermal synthesis of NiTe nanorods for non-enzymatic electrochemical sensing of whole blood hemoglobin in pregnant anemic women. Anal Chim Acta 2022;1189:339204. [PMID: 34815043 DOI: 10.1016/j.aca.2021.339204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Baezzat MR, Tavakkoli N, Zamani H. Electrochemical sensing platform based on modified graphite screen-printed electrode to determine isoproterenol in the presence of theophylline and acetaminophen. J Mater Sci: Mater Electron 2022;33:1173-1182. [DOI: 10.1007/s10854-021-07399-9] [Reference Citation Analysis]
|
15 |
李 浩. A Review for Rapid Detection Methods and Electrochemical Analysis of Folic Acid. AAC 2022;12:157-164. [DOI: 10.12677/aac.2022.122020] [Reference Citation Analysis]
|
16 |
Sana Rafiq H, Fatima B, Hussain D, Mohyuddin A, Majeed S, Manzoor S, Imran M, Nawaz R, Shabbir S, Mukhtar S, Naeem Ashiq M, Najam-ul-haq M. Selective electrochemical sensing of hemoglobin from blood of β-thalassemia major patients by tellurium nanowires-graphene oxide modified electrode. Chemical Engineering Journal 2021;419:129706. [DOI: 10.1016/j.cej.2021.129706] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Cheng Y, Zhan T, Feng X, Han G. A synergistic effect of gold nanoparticles and melamine with signal amplification for C-reactive protein sensing. Journal of Electroanalytical Chemistry 2021;895:115417. [DOI: 10.1016/j.jelechem.2021.115417] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
18 |
Miura D, Kimura H, Tsugawa W, Ikebukuro K, Sode K, Asano R. Rapid, convenient, and highly sensitive detection of human hemoglobin in serum using a high-affinity bivalent antibody-enzyme complex. Talanta 2021;234:122638. [PMID: 34364447 DOI: 10.1016/j.talanta.2021.122638] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
19 |
Hengameh Zabolestani, Sarhadi H, Beitollahi H. Electrochemical Sensor Based on Modified Screen Printed Electrode for Vitamin B6 Detection. Surf Engin Appl Electrochem 2021;57:277-285. [DOI: 10.3103/s1068375521020149] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
20 |
Gao B, Liang Z, Han D, Han F, Fu W, Wang W, Liu Z, Niu L. Molecularly imprinted photo-electrochemical sensor for hemoglobin detection based on titanium dioxide nanotube arrays loaded with CdS quantum dots. Talanta 2021;224:121924. [DOI: 10.1016/j.talanta.2020.121924] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
21 |
Kalambate PK, Huang Y. Nanomaterials-Based Electrochemical Sensors and Biosensors for Early Identification and Monitoring of Diseases. Environmental Chemistry for a Sustainable World 2021. [DOI: 10.1007/978-3-030-56413-1_7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
22 |
Wang Z, Yang S, Wang Y, Feng W, Li B, Jiao J, Han B, Chen Q. A novel oriented immunosensor based on AuNPs-thionine-CMWCNTs and staphylococcal protein A for interleukin-6 analysis in complicated biological samples. Analytica Chimica Acta 2020;1140:145-52. [DOI: 10.1016/j.aca.2020.10.025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
23 |
Ahmadi S, Fini H, Ho T, Nadoushan PJ, Kraatz H, Kerman K. Development of an Electrochemical Sensor Using Pencil Graphite Electrode for Monitoring UV-Induced DNA Damage. J Chem Educ 2020;97:4445-52. [DOI: 10.1021/acs.jchemed.9b01065] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
24 |
Rahimpour K, Shafagh‐azar A, Abbasi H, Mohammad‐gholizadeh A, Hezarkhani Z, Teimuri‐mofrad R. 2‐[(4‐Aminobutyl)ferrocenylmethylidene]‐5,6‐dimethoxy‐1‐indanone derivatives: Synthesis, characterization, and investigation of electro‐optical properties. Appl Organometal Chem 2020;34. [DOI: 10.1002/aoc.5633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
25 |
Zhang L, Tian Z, Bachman H, Zhang P, Huang TJ. A Cell-Phone-Based Acoustofluidic Platform for Quantitative Point-of-Care Testing. ACS Nano 2020;14:3159-69. [PMID: 32119517 DOI: 10.1021/acsnano.9b08349] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 9.7] [Reference Citation Analysis]
|
26 |
Feng X, Li H, Ferranco A, Chen Z, Xue M, Han G, Jiang Z, Kraatz H. A Very Simple Method for Detection of Bisphenol A in Environmental Water by Heme Signal Amplification. J Electrochem Soc 2020;167:067503. [DOI: 10.1149/1945-7111/ab7e20] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
27 |
Dhinakaran V, Vigneswari K, Lavanya M, Varsha Shree M. Point-of-care applications with graphene in human life. Analytical Applications of Graphene for Comprehensive Analytical Chemistry 2020. [DOI: 10.1016/bs.coac.2020.08.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
28 |
Han G, Li H, Ferranco A, Tao Zhan, Cheng Y, Chen Z, Xue M, Feng X, Kraatz H. The construction of a simple sensor for the simultaneous detection of nitrite and thiosulfate by heme catalysis. RSC Adv 2020;10:35007-16. [DOI: 10.1039/d0ra06942f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
29 |
Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. Chem Rec 2020;20:682-92. [PMID: 31845511 DOI: 10.1002/tcr.201900092] [Cited by in Crossref: 221] [Cited by in F6Publishing: 227] [Article Influence: 55.3] [Reference Citation Analysis]
|
30 |
Jin K, Hu S, Su Y, Yang C, Li J, Ma H. Disposable impedance-based immunosensor array with direct-laser writing platform. Anal Chim Acta 2019;1067:48-55. [PMID: 31047148 DOI: 10.1016/j.aca.2019.03.053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
|
31 |
Pandey I, Tiwari JD. A novel dual imprinted conducting nanocubes based flexible sensor for simultaneous detection of hemoglobin and glycated haemoglobin in gestational diabetes mellitus patients. Sensors and Actuators B: Chemical 2019;285:470-8. [DOI: 10.1016/j.snb.2019.01.093] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
|