BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang H, Wang C, Wang A, Zhang L, Luo X, Yuan P, Feng J. Green synthesis of Pd nanocones as a novel and effective electrochemiluminescence illuminant for highly sensitive detection of dopamine. Sensors and Actuators B: Chemical 2019;281:588-94. [DOI: 10.1016/j.snb.2018.10.153] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang G, Tan K, Yang J, Yuan R, Chen S. Coreactant-free polyfluorene nanoparticles for the electrochemiluminescence quantitative analysis of dopamine and norepinephrine. Sens Diagn 2023. [DOI: 10.1039/d2sd00172a] [Reference Citation Analysis]
2 Hu S, Qin D, Meng S, Wu Y, Luo Z, Deng B. Cathodic electrochemiluminescence based on resonance energy transfer between sulfur quantum dots and dopamine quinone for the detection of dopamine. Microchemical Journal 2022;181:107776. [DOI: 10.1016/j.microc.2022.107776] [Reference Citation Analysis]
3 Li Z, Zhou Y, Cui Y, Liang G. A flexible and bright surface-enhanced electrochemiluminescence film constructed from efficient aggregation-induced emission luminogens for biomolecular sensing. J Mater Chem B 2022;10:3320-8. [PMID: 35380155 DOI: 10.1039/d2tb00400c] [Reference Citation Analysis]
4 Wang D, Jiang S, Liang Y, Wang X, Zhuang X, Tian C, Luan F, Chen L. Selective detection of enrofloxacin in biological and environmental samples using a molecularly imprinted electrochemiluminescence sensor based on functionalized copper nanoclusters. Talanta 2022;236:122835. [PMID: 34635225 DOI: 10.1016/j.talanta.2021.122835] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
5 Shen L, Wang Y, Shan H, Chen J, Wang A, Liu W, Yuan P, Feng J. Covalent organic framework linked with amination luminol derivative as enhanced ECL luminophore for ultrasensitive analysis of cytochrome c. Anal Methods 2022. [DOI: 10.1039/d2ay01208a] [Reference Citation Analysis]
6 Li X, Du X. Surface enhanced electrochemiluminescence of the Ru(bpy)32+/tripropylamine system by Au@SiO2 nanoparticles for highly sensitive and selective detection of dopamine. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107224] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Zhang N, Wang XT, Xiong Z, Huang LY, Jin Y, Wang AJ, Yuan PX, He YB, Feng JJ. Hydrogen Bond Organic Frameworks as a Novel Electrochemiluminescence Luminophore: Simple Synthesis and Ultrasensitive Biosensing. Anal Chem 2021;93:17110-8. [PMID: 34913694 DOI: 10.1021/acs.analchem.1c04608] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
8 Lakshmanakumar M, Nesakumar N, Kulandaisamy AJ, Rayappan JBB. Principles and recent developments in optical and electrochemical sensing of dopamine: A comprehensive review. Measurement 2021;183:109873. [DOI: 10.1016/j.measurement.2021.109873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Munawar A, Zafar F, Majeed S, Irfan M, Ullah Khan H, Yasmin G, Akhtar N. Bioinspired N-C coated ZnO based electrochemiluminescence sensor for dopamine screening from neuroblastoma patient. Journal of Electroanalytical Chemistry 2021;895:115469. [DOI: 10.1016/j.jelechem.2021.115469] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
10 Li H, Lv W, Yang Q, Li Q, Li F. Inorganic Recognizer-Assisted Homogeneous Electrochemiluminescence Determination of Organophosphorus Pesticides via Target-Controlled Emitter Release. J Agric Food Chem 2021;69:6087-95. [PMID: 34018740 DOI: 10.1021/acs.jafc.1c01006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
11 Kshtriya V, Koshti B, Gour N. Green synthesized nanoparticles: Classification, synthesis, characterization, and applications. Biosynthesized Nanomaterials 2021. [DOI: 10.1016/bs.coac.2020.12.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Dong Y, Liu J, Zheng J. A sensitive dopamine electrochemical sensor based on hollow zeolitic imidazolate framework. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;608:125617. [DOI: 10.1016/j.colsurfa.2020.125617] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
13 Wang Y, Wang S, Huang M, Chen F. Bifunctionalized Prussian blue analogue particles oxidize luminol to produce chemiluminescence without other oxidants. Microchemical Journal 2020;158:105213. [DOI: 10.1016/j.microc.2020.105213] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wang H, Wang A, Yuan P, Feng J. Flower-like metal-organic framework microsphere as a novel enhanced ECL luminophore to construct the coreactant-free biosensor for ultrasensitive detection of breast cancer 1 gene. Sensors and Actuators B: Chemical 2020;320:128395. [DOI: 10.1016/j.snb.2020.128395] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
15 Chen M, Ning Z, Chen K, Zhang Y, Shen Y. Recent Advances of Electrochemiluminescent System in Bioassay. J Anal Test 2020;4:57-75. [DOI: 10.1007/s41664-020-00136-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
16 Zhao W, Ma Y, Ye J, Jin J. A closed bipolar electrochemiluminescence sensing platform based on quantum dots: A practical solution for biochemical analysis and detection. Sensors and Actuators B: Chemical 2020;311:127930. [DOI: 10.1016/j.snb.2020.127930] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
17 Wang S, Wang M, Li C, Li H, Ge C, Zhang X, Jin Y. A highly sensitive and stable electrochemiluminescence immunosensor for alpha-fetoprotein detection based on luminol-AgNPs@Co/Ni-MOF nanosheet microflowers. Sensors and Actuators B: Chemical 2020;311:127919. [DOI: 10.1016/j.snb.2020.127919] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
18 Wang YW, Nan LJ, Jiang YR, Fan MF, Chen J, Yuan PX, Wang AJ, Feng JJ. A robust and efficient aqueous electrochemiluminescence emitter constructed by sulfonate porphyrin-based metal-organic frameworks and its application in ascorbic acid detection. Analyst 2020;145:2758-66. [PMID: 32091034 DOI: 10.1039/c9an02442e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
19 Li X, Sun X, Fan D, Yan T, Feng R, Wang H, Wu D, Wei Q. A ternary quenching electrochemiluminescence insulin immunosensor based on Mn2+ released from MnO2@Carbon core-shell nanospheres with ascorbic acid quenching AuPdPt–MoS2@TiO2 enhanced luminol. Biosensors and Bioelectronics 2019;142:111551. [DOI: 10.1016/j.bios.2019.111551] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
20 Yi Z, Xu H, Hu D, Yan K. Facile synthesis of supported Pd catalysts by chemical fluid deposition method for selective hydrogenation of biomass-derived furfural. Journal of Alloys and Compounds 2019;799:59-65. [DOI: 10.1016/j.jallcom.2019.05.350] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
21 Wang H, Fang Y, Yuan P, Wang A, Luo X, Feng J. Construction of ultrasensitive label-free aptasensor for thrombin detection using palladium nanocones boosted electrochemiluminescence system. Electrochimica Acta 2019;310:195-202. [DOI: 10.1016/j.electacta.2019.04.093] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]