BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li C, Peng Y, Wang H, Liang A, Jiang Z. A nanosol SERS method for quantitative analysis of trace potassium based on aptamer recognition and silver nanorod catalysis of Ag(I)-glucose reaction. Sensors and Actuators B: Chemical 2019;281:53-9. [DOI: 10.1016/j.snb.2018.10.079] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Li D, Xia L, Li G. Recent Progress on the Applications of Nanozyme in Surface-Enhanced Raman Scattering. Chemosensors 2022;10:462. [DOI: 10.3390/chemosensors10110462] [Reference Citation Analysis]
2 Shen J, Zhu C, Li L, Yang T, Wu Y, Ma C, Gu J, Gao H, Yang Z, Wang Z, Qiu X, Zhong L, Hu A, Huang A, Xu J, Guo S, Yin W, Chen G. TMB-AgNPs@COF based SERS probe for the rapid detection of glucose in drinks. Vibrational Spectroscopy 2022;122:103411. [DOI: 10.1016/j.vibspec.2022.103411] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Jiang G, Li Y, Liu J, Liu L, Pi F. Progress on aptamer-based SERS sensors for food safety and quality assessment: methodology, current applications and future trends. Crit Rev Food Sci Nutr 2022;:1-18. [PMID: 35943403 DOI: 10.1080/10408398.2022.2108370] [Reference Citation Analysis]
4 Shen R, Zhang T, Zhu H, Qin L, Kang S, Li X. A dendritic Ag induced by the polyaniline on copper sheet for facilely and highly efficient SERS detection. Materials Chemistry and Physics 2022;287:126346. [DOI: 10.1016/j.matchemphys.2022.126346] [Reference Citation Analysis]
5 Wang Z, Shu Y, Li J, Liang A, Jiang Z. Silver nanosol RRS aptamer assay of trace glyphosate based on gold-doped polystyrene nanocatalytic amplification. Microchemical Journal 2022;176:107252. [DOI: 10.1016/j.microc.2022.107252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Liu R, Zhang F, Sang Y, Katouzian I, Jafari SM, Wang X, Li W, Wang J, Mohammadi Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends in Food Science & Technology 2022;123:355-75. [DOI: 10.1016/j.tifs.2022.03.025] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
7 Yao D, Wang H, Lu S, Li C, Liang A, Wen G, Jiang Z. On-signal amplification of silver nanosol RRS/SERS aptamer detection of ultratrace urea by polystyrene nanosphere catalyst. Spectrochim Acta A Mol Biomol Spectrosc 2022;265:120353. [PMID: 34492514 DOI: 10.1016/j.saa.2021.120353] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Li J, Zhao Y, Sun L, Liang A, Jiang Z. Silver nanosol SERS/Flu/Abs trimode analysis of trace H2O2 based on Fe-doped carbon dot catalytic oxidation of TMB. Vibrational Spectroscopy 2022;118:103334. [DOI: 10.1016/j.vibspec.2022.103334] [Reference Citation Analysis]
9 Salehan P, Ensafi AA, Mousaabadi KZ, Ghasemi JB, Aghaee E, Rezaei B. A theoretical and experimental study of polyaniline/GCE and DNA G-quadruplex conformation as an impedimetric biosensor for the determination of potassium ions. Chemosphere 2021;:133460. [PMID: 34971631 DOI: 10.1016/j.chemosphere.2021.133460] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Wong XY, Quesada-González D, Manickam S, Muthoosamy K. Fluorescence "turn-off/turn-on" biosensing of metal ions by gold nanoclusters, folic acid and reduced graphene oxide. Anal Chim Acta 2021;1175:338745. [PMID: 34330444 DOI: 10.1016/j.aca.2021.338745] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Jiang L, Hassan MM, Ali S, Li H, Sheng R, Chen Q. Evolving trends in SERS-based techniques for food quality and safety: A review. Trends in Food Science & Technology 2021;112:225-40. [DOI: 10.1016/j.tifs.2021.04.006] [Cited by in Crossref: 54] [Cited by in F6Publishing: 67] [Article Influence: 27.0] [Reference Citation Analysis]
12 Muhammad M, Huang Q. A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta 2021;227:122188. [PMID: 33714469 DOI: 10.1016/j.talanta.2021.122188] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
13 Wang H, Zhang Z, Chen C, Liang A, Jiang Z. Fullerene carbon dot catalytic amplification-aptamer assay platform for ultratrace As+3 utilizing SERS/RRS/Abs trifunctional Au nanoprobes. Journal of Hazardous Materials 2021;403:123633. [DOI: 10.1016/j.jhazmat.2020.123633] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
14 Li C, Liu Q, Wang X, Luo Y, Jiang Z. An ultrasensitive K+ fluorescence/absorption di-mode assay based on highly co-catalysiscarbon dot nanozyme and DNAzyme. Microchemical Journal 2020;159:105508. [DOI: 10.1016/j.microc.2020.105508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
15 Yao D, Li C, Wang H, Wen G, Liang A, Jiang Z. A new dual-mode SERS and RRS aptasensor for detecting trace organic molecules based on gold nanocluster-doped covalent-organic framework catalyst. Sensors and Actuators B: Chemical 2020;319:128308. [DOI: 10.1016/j.snb.2020.128308] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
16 Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z. Nanosol SERS quantitative analytical method: A review. TrAC Trends in Analytical Chemistry 2020;127:115885. [DOI: 10.1016/j.trac.2020.115885] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
17 Li D, Yuan X, Li C, Luo Y, Jiang Z. A novel fluorescence aptamer biosensor for trace Pb(II) based on gold-doped carbon dots and DNAzyme synergetic catalytic amplification. Journal of Luminescence 2020;221:117056. [DOI: 10.1016/j.jlumin.2020.117056] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 7.3] [Reference Citation Analysis]
18 You M, Yang S, An Y, Zhang F, He P. A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. Journal of Electroanalytical Chemistry 2020;862:114017. [DOI: 10.1016/j.jelechem.2020.114017] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
19 Li C, Yao D, Jiang X, Liang A, Jiang Z. Strong catalysis of silver-doped carbon nitride nanoparticles and their application to aptamer SERS and RRS coupled dual-mode detection of ultra-trace K +. J Mater Chem C 2020;8:11088-101. [DOI: 10.1039/d0tc01581d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
20 Li D, Li C, Liang A, Jiang Z. SERS and fluorescence dual-mode sensing trace hemin and K+ based on G-quarplex/hemin DNAzyme catalytic amplification. Sensors and Actuators B: Chemical 2019;297:126799. [DOI: 10.1016/j.snb.2019.126799] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
21 Shen G, Zhang H, Xiang J, Yang F, Wu S, Wang W, Du N, Zhang J, Sun T, Tang Y. Direct detection of potassium and lead (II) ions based on assembly-disassembly of a chiral cyanine dye /TBA complex. Talanta 2019;201:490-5. [PMID: 31122455 DOI: 10.1016/j.talanta.2019.04.032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
22 Kaur H, Shorie M. Nanomaterial based aptasensors for clinical and environmental diagnostic applications. Nanoscale Adv 2019;1:2123-38. [DOI: 10.1039/c9na00153k] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 10.8] [Reference Citation Analysis]
23 Chai H, Ma X, Meng F, Mei Q, Tang Y, Miao P. Electrochemical aptasensor based on a potassium ion-triggered DNA conformation transition and self-assembly on an electrode. New J Chem 2019;43:7928-31. [DOI: 10.1039/c9nj00158a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]