BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu S, Zhang F, Xu L, Liu X, Ma P, Sun Y, Wang X, Song D. A fluorescence resonance energy transfer biosensor based on carbon dots and gold nanoparticles for the detection of trypsin. Sensors and Actuators B: Chemical 2018;273:1015-21. [DOI: 10.1016/j.snb.2018.07.023] [Cited by in Crossref: 35] [Cited by in F6Publishing: 17] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022;206:115-47. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
2 Castro RC, Lopes AFR, Soares JX, Ribeiro DSM, Santos JLM. Determination of atenolol based on the reversion of the fluorescence resonance energy transfer between AgInS2 quantum dots and Au nanoparticles. Analyst 2021;146:1004-15. [PMID: 33295361 DOI: 10.1039/d0an01874k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
3 Zhou J, Zhang F, Zhao R, Liu S, Li W, He F, Gai S, Yang P. A novel “off-on-off” fluorescent sensor based on inner filter effect for ultrasensitive detection of protamine/trypsin and subcellular colocalization. Sensors and Actuators B: Chemical 2021;340:129930. [DOI: 10.1016/j.snb.2021.129930] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Li S, Zhang Z. Recent advances in the construction and analytical applications of carbon dots-based optical nanoassembly. Talanta 2021;223:121691. [PMID: 33303144 DOI: 10.1016/j.talanta.2020.121691] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Miao S, Liang K, Kong B. Förster resonance energy transfer (FRET) paired carbon dot-based complex nanoprobes: versatile platforms for sensing and imaging applications. Mater Chem Front 2020;4:128-39. [DOI: 10.1039/c9qm00538b] [Cited by in Crossref: 19] [Article Influence: 9.5] [Reference Citation Analysis]
6 Zhou Z, Liu W, Wang Y, Ding F, Liu X, Zhao Q, Zou P, Wang X, Rao H. A fluorometric and colorimetric method for determination of trypsin by exploiting the gold nanocluster-induced aggregation of hemoglobin-coated gold nanoparticles. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3380-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
7 Costa RS, de Castro MO, da Silva GH, Delite FDS, Strauss M, Ferreira OP, Martinez DS, Viana BC. Carbon-dots from babassu coconut (Orbignya speciosa) biomass: Synthesis, characterization, and toxicity to Daphnia magna. Carbon Trends 2021;5:100133. [DOI: 10.1016/j.cartre.2021.100133] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ji C, Zhou Y, Leblanc RM, Peng Z. Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sens 2020;5:2724-41. [PMID: 32812427 DOI: 10.1021/acssensors.0c01556] [Cited by in Crossref: 102] [Cited by in F6Publishing: 70] [Article Influence: 51.0] [Reference Citation Analysis]
9 Zhao W, Li B, Xu S, Zhu Y, Liu X. A fabrication strategy for protein sensors based on an electroactive molecularly imprinted polymer: Cases of bovine serum albumin and trypsin sensing. Anal Chim Acta 2020;1117:25-34. [PMID: 32408951 DOI: 10.1016/j.aca.2020.04.023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Chen J, Sun N, Chen H, Zhang Y, Wang X, Zhou N. A FRET-based detection of N-acetylneuraminic acid using CdSe/ZnS quantum dot and exonuclease III-assisted recycling amplification strategy. Food Chem 2021;367:130754. [PMID: 34384983 DOI: 10.1016/j.foodchem.2021.130754] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
11 Palomar Q, Svärd A, Zeng S, Hu Q, Liu F, Aili D, Zhang Z. Detection of gingipain activity using solid state nanopore sensors. Sensors and Actuators B: Chemical 2022;368:132209. [DOI: 10.1016/j.snb.2022.132209] [Reference Citation Analysis]
12 Song X, Zhao L, Luo C, Ren X, Yang L, Wei Q. Peptide-Based Biosensor with a Luminescent Copper-Based Metal-Organic Framework as an Electrochemiluminescence Emitter for Trypsin Assay. Anal Chem 2021;93:9704-10. [PMID: 34242018 DOI: 10.1021/acs.analchem.1c00850] [Reference Citation Analysis]
13 Nazri NAA, Azeman NH, Luo Y, A Bakar AA. Carbon quantum dots for optical sensor applications: A review. Optics & Laser Technology 2021;139:106928. [DOI: 10.1016/j.optlastec.2021.106928] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 22.0] [Reference Citation Analysis]
14 Wu J, Wang H, Yang H, Chen J, Yang H. A novel arginine bioprobe based on up-conversion fluorescence resonance energy transfer. Analytica Chimica Acta 2019;1079:200-6. [DOI: 10.1016/j.aca.2019.06.060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
15 Li L, Han B, Wang Y, Shi H, Zhao J, Li G. Gold Nanoparticles-based Bio-Sensing Methods for Tumor-related Biomedical Applications in Bodily Fluids. CNANO 2020;16:425-40. [DOI: 10.2174/1573413715666190206152717] [Reference Citation Analysis]
16 Majdinasab M, Daneshi M, Louis Marty J. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta 2021;232:122397. [PMID: 34074393 DOI: 10.1016/j.talanta.2021.122397] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
17 Qu F, Wang Z, Li C, Jiang D, Zhao X. Peptide cleavage-mediated aggregation-enhanced emission from metal nanoclusters for detecting trypsin and screen its inhibitors from foods. Sensors and Actuators B: Chemical 2022;359:131610. [DOI: 10.1016/j.snb.2022.131610] [Reference Citation Analysis]
18 Zhang W, Zhang Y, Liu X, Zhang Y, Liu Y, Wang W, Su R, Sun Y, Huang Y, Song D, Wu Y, Wang X. Ratiometric fluorescence and colorimetric dual-mode sensing platform based on carbon dots for detecting copper(II) ions and D-penicillamine. Anal Bioanal Chem. [DOI: 10.1007/s00216-021-03789-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Gao T, Xing S, Xu M, Fu P, Yao J, Zhang X, Zhao Y, Zhao C. A peptide nucleic acid-regulated fluorescence resonance energy transfer DNA assay based on the use of carbon dots and gold nanoparticles. Mikrochim Acta 2020;187:375. [PMID: 32518969 DOI: 10.1007/s00604-020-04357-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Li J, Qiao D, Zhao J, Weng G, Zhu J, Zhao J. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019;217:247-55. [DOI: 10.1016/j.saa.2019.03.092] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
21 Hu J, Sun Y, Aryee AA, Qu L, Zhang K, Li Z. Mechanisms for carbon dots-based chemosensing, biosensing, and bioimaging: A review. Anal Chim Acta 2022;1209:338885. [PMID: 35569838 DOI: 10.1016/j.aca.2021.338885] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
22 Lin S, Liu S, Dai G, Zhang X, Xia F, Dai Y. A click-induced fluorescence-quenching sensor based on gold nanoparticles for detection of copper(Ⅱ) ion and ascorbic acid. Dyes and Pigments 2021;195:109726. [DOI: 10.1016/j.dyepig.2021.109726] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Wang Y, Xia K, Wang L, Wu M, Sang X, Wan K, Zhang X, Liu X, Wei G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. Small 2021;17:e2005578. [PMID: 33448113 DOI: 10.1002/smll.202005578] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
24 Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B. [DOI: 10.1039/d1tb02446a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Wang M, Liu Y, Su D, Chen J, Su X. Phosphate-guanidine interaction based fluorometric strategy for protein kinase activity sensing. Sensors and Actuators B: Chemical 2019;290:512-9. [DOI: 10.1016/j.snb.2019.03.148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
26 Fu F, Zhang Y, Li L, Wang H, Li Q, Tao X, Song Y, Song E. Intracellular Pathogen Detection Based on Dual-Recognition Units Constructed Fluorescence Resonance Energy Transfer Nanoprobe. Anal Chem 2020;92:11462-8. [PMID: 32693581 DOI: 10.1021/acs.analchem.0c02695] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Wang Y, Shao Z, Cheng C, Wang J, Song Z, Song W, Zheng F, Wang H. Fluorescent oligonucleotide indicators for ratiometric microRNA sensing on metal-organic frameworks. Chemical Engineering Journal 2022;437:135296. [DOI: 10.1016/j.cej.2022.135296] [Reference Citation Analysis]
28 Barrientos K, Arango JP, Moncada MS, Placido J, Patiño J, Macías SL, Maldonado C, Torijano S, Bustamante S, Londoño ME, Jaramillo M. Carbon dot-based biosensors for the detection of communicable and non -communicable diseases. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123791] [Reference Citation Analysis]
29 Li M, Chen T, Gooding JJ, Liu J. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens 2019;4:1732-48. [PMID: 31267734 DOI: 10.1021/acssensors.9b00514] [Cited by in Crossref: 353] [Cited by in F6Publishing: 255] [Article Influence: 117.7] [Reference Citation Analysis]
30 Zhang H, Cheng C, Dong N, Ji X, Hu J. Positively charged Ag@Au core-shell nanoparticles as highly stable and enhanced fluorescence quenching platform for one-step nuclease activity detection. Biochemical Engineering Journal 2021;167:107890. [DOI: 10.1016/j.bej.2020.107890] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Kaur J, Singh PK. Trypsin Detection Strategies: A Review. Critical Reviews in Analytical Chemistry. [DOI: 10.1080/10408347.2020.1846490] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
32 Rahmati Z, Roushani M, Hosseini H. Amorphous Ni(OH)2 nano-boxes as a high performance substrate for aptasensor application. Measurement 2022;189:110649. [DOI: 10.1016/j.measurement.2021.110649] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Si P, Razmi N, Nur O, Solanki S, Pandey CM, Gupta RK, Malhotra BD, Willander M, de la Zerda A. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv 2021;3:2679-98. [DOI: 10.1039/d0na00961j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
34 Swaminathan N, Sharma N, Nerthigan Y, Wu H. Self-assembled diphenylalanine-zinc oxide hybrid nanostructures as a highly selective luminescent biosensor for trypsin detection. Applied Surface Science 2021;554:149600. [DOI: 10.1016/j.apsusc.2021.149600] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]