BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ouyang H, Ling S, Liang A, Jiang Z. A facile aptamer-regulating gold nanoplasmonic SERS detection strategy for trace lead ions. Sensors and Actuators B: Chemical 2018;258:739-44. [DOI: 10.1016/j.snb.2017.12.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 7.2] [Reference Citation Analysis]
Number Citing Articles
1 Shu Y, Li S, Li C, Liang A, Jiang Z. Liquid Crystal@Nanosilver Catalytic Amplification—Aptamer Trimode Biosensor for Trace Pb2+. IJMS 2023;24:2920. [DOI: 10.3390/ijms24032920] [Reference Citation Analysis]
2 Huang H, Weng G, Liang A, Jiang Z. Liquid crystal 5CB-loaded nanogold as new nanocatalyst combined with aptamer to determine small organic pollutants by Cu2O resonance Rayleigh scattering probe. Chem Pap . [DOI: 10.1007/s11696-022-02456-x] [Reference Citation Analysis]
3 Jiang G, Li Y, Liu J, Liu L, Pi F. Progress on aptamer-based SERS sensors for food safety and quality assessment: methodology, current applications and future trends. Crit Rev Food Sci Nutr 2022;:1-18. [PMID: 35943403 DOI: 10.1080/10408398.2022.2108370] [Reference Citation Analysis]
4 Sawan S, Errachid A, Maalouf R, Jaffrezic-renault N. Aptamers functionalized metal and metal oxide nanoparticles: Recent advances in heavy metal monitoring. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116748] [Reference Citation Analysis]
5 Guo Z, Chen P, Yin L, Zuo M, Chen Q, El-seedi HR, Zou X. Determination of lead in food by surface-enhanced Raman spectroscopy with aptamer regulating gold nanoparticles reduction. Food Control 2022;132:108498. [DOI: 10.1016/j.foodcont.2021.108498] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
6 Hassan Oghli A, Soleymanpour A. One-step electrochemical modification of pencil graphite electrode with reduced graphene oxide/phosphotungstic acid/sol–gel, and its application to the trace analysis of lead(II). Microchemical Journal 2022;173:107034. [DOI: 10.1016/j.microc.2021.107034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Duan N, Li C, Song M, Wang Z, Zhu C, Wu S. Signal amplification of SiO2 nanoparticle loaded horseradish peroxidase for colorimetric detection of lead ions in water. Spectrochim Acta A Mol Biomol Spectrosc 2022;265:120342. [PMID: 34492513 DOI: 10.1016/j.saa.2021.120342] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Li J, Shi J, Liang A, Jiang Z. Highly catalysis amplification of MOFNd-loaded nanogold combined with specific aptamer SERS/RRS assay of trace glyphosate. Analyst 2022;147:2369-2377. [DOI: 10.1039/d2an00549b] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Xu G, Song P, Xia L. Examples in the detection of heavy metal ions based on surface-enhanced Raman scattering spectroscopy. Nanophotonics 2021;10:4419-45. [DOI: 10.1515/nanoph-2021-0363] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Lai H, Li G, Zhang Z. Ti3C2Tx-AgNPs@beta-cyclodextrin SERS substrate for rapid and selective determination of erythrosin B in dyed food. Sensors and Actuators B: Chemical 2021;346:130595. [DOI: 10.1016/j.snb.2021.130595] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
11 Liu Q, Zhang R, Yu B, Liang A, Jiang Z. A highly sensitive gold nanosol SERS aptamer assay for glyphosate with a new COF nanocatalytic reaction of glycol-Au(III). Sensors and Actuators B: Chemical 2021;344:130288. [DOI: 10.1016/j.snb.2021.130288] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
12 Qi S, Duan N, Sun Y, Zhou Y, Ma P, Wu S, Wang Z. High-affinity aptamer of allergen β-lactoglobulin: Selection, recognition mechanism and application. Sensors and Actuators B: Chemical 2021;340:129956. [DOI: 10.1016/j.snb.2021.129956] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
13 He Q, Han Y, Huang Y, Gao J, Gao Y, Han L, Zhang Y. Reusable dual-enhancement SERS sensor based on graphene and hybrid nanostructures for ultrasensitive lead (Ⅱ) detection. Sensors and Actuators B: Chemical 2021;341:130031. [DOI: 10.1016/j.snb.2021.130031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
14 Guo Z, Chen P, Yosri N, Chen Q, Elseedi HR, Zou X, Yang H. Detection of Heavy Metals in Food and Agricultural Products by Surface-enhanced Raman Spectroscopy. Food Reviews International. [DOI: 10.1080/87559129.2021.1934005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
15 Muhammad M, Huang Q. A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta 2021;227:122188. [PMID: 33714469 DOI: 10.1016/j.talanta.2021.122188] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
16 Kalyani N, Chatterjee B, Sharma TK. Aptamer Mediated Sensing of Environmental Pollutants Utilizing Peroxidase Mimic Activity of NanoZymes. Environmental Chemistry for a Sustainable World 2021. [DOI: 10.1007/978-3-030-68230-9_5] [Reference Citation Analysis]
17 Yang Y, Li W, Liu J. Review of recent progress on DNA-based biosensors for Pb2+ detection. Anal Chim Acta 2021;1147:124-43. [PMID: 33485571 DOI: 10.1016/j.aca.2020.12.056] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
18 Chen G, Dai Z, Ji B, Li S, Chen X, Gao Y, Wen W, Zhou B. Dynamic enrichment of plasmonic hot-spots and analytes on superhydrophobic and magnetically functionalized platform for surface-enhanced Raman scattering. Sensors and Actuators B: Chemical 2020;319:128297. [DOI: 10.1016/j.snb.2020.128297] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
19 Sun X, Zhao Y, Cui X, Liu R, Yu M, Fei Q, Liu Q, Feng G, Shan H, Huan Y. Colorimetric sensing of iodide ions based on unmodified gold nanoparticles and the distinctive antiaggregation-to-aggregation process. Luminescence 2020;35:1036-42. [PMID: 32515169 DOI: 10.1002/bio.3813] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z. Nanosol SERS quantitative analytical method: A review. TrAC Trends in Analytical Chemistry 2020;127:115885. [DOI: 10.1016/j.trac.2020.115885] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
21 Xu W, Zhao A, Zuo F, Khan R, Hussain HMJ, Li J. A highly sensitive DNAzyme-based SERS biosensor for quantitative detection of lead ions in human serum. Anal Bioanal Chem 2020;412:4565-74. [DOI: 10.1007/s00216-020-02709-2] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
22 Naseri M, Mohammadniaei M, Sun Y, Ashley J. The Use of Aptamers and Molecularly Imprinted Polymers in Biosensors for Environmental Monitoring: A Tale of Two Receptors. Chemosensors 2020;8:32. [DOI: 10.3390/chemosensors8020032] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
23 Chatterjee B, Das SJ, Anand A, Sharma TK. Nanozymes and aptamer-based biosensing. Materials Science for Energy Technologies 2020;3:127-35. [DOI: 10.1016/j.mset.2019.08.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
24 Zhang X, Wu D, Zhou X, Yu Y, Liu J, Hu N, Wang H, Li G, Wu Y. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends in Analytical Chemistry 2019;121:115668. [DOI: 10.1016/j.trac.2019.115668] [Cited by in Crossref: 96] [Cited by in F6Publishing: 67] [Article Influence: 24.0] [Reference Citation Analysis]
25 Yao D, Liu Q, Jiang Z. Graphene oxide nanoribbon catalysis of gold nanoreaction and its application to SERS quantitative analysis of ultratrace glucose. Chem Pap 2020;74:1059-69. [DOI: 10.1007/s11696-019-00947-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
26 Huang L, Sun DW, Pu H, Wei Q. Development of Nanozymes for Food Quality and Safety Detection: Principles and Recent Applications. Compr Rev Food Sci Food Saf 2019;18:1496-513. [PMID: 33336906 DOI: 10.1111/1541-4337.12485] [Cited by in Crossref: 74] [Cited by in F6Publishing: 78] [Article Influence: 18.5] [Reference Citation Analysis]
27 Gao Y, You T, Yang N, Zhang C, Yin P. Superhydrophobic 3D Forest‐Like Ag Microball/Nanodendrite Hierarchical Structure as SERS Sensor for Rapid Droplets Detection. Adv Mater Interfaces 2019;6:1801966. [DOI: 10.1002/admi.201801966] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
28 Wang H, Sun Y, Li H, Yue W, Kang Q, Shen D. A smartphone-based ratiometric resonance light scattering device for field analysis of Pb2+ in river water samples and immunoassay of alpha fetoprotein using PbS nanoparticles as signal tag. Sensors and Actuators B: Chemical 2018;271:358-66. [DOI: 10.1016/j.snb.2018.05.103] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
29 Li C, Liu Y, Liang A, Jiang Z. SERS quantitative analysis of trace ferritin based on immunoreaction regulation of graphene oxide catalytic nanogold reaction. Sensors and Actuators B: Chemical 2018;263:183-9. [DOI: 10.1016/j.snb.2018.02.080] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]