BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pavithra M, Muruganand S, Parthiban C. Development of novel paper based electrochemical immunosensor with self-made gold nanoparticle ink and quinone derivate for highly sensitive carcinoembryonic antigen. Sensors and Actuators B: Chemical 2018;257:496-503. [DOI: 10.1016/j.snb.2017.10.177] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Caratelli V, Di Meo E, Colozza N, Fabiani L, Fiore L, Moscone D, Arduini F. Nanomaterials and paper-based electrochemical devices: merging strategies for fostering sustainable detection of biomarkers. J Mater Chem B 2022;10:9021-39. [PMID: 35899594 DOI: 10.1039/d2tb00387b] [Reference Citation Analysis]
2 Yuan Y, Liu B, Wang T, Li N, Zhang Z, Zhang H. Electrochemical microfluidic paper-based analytical devices for tumor marker detection. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116816] [Reference Citation Analysis]
3 Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. J Agric Food Chem 2022. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Reference Citation Analysis]
4 Zhang Y, Cen Q, Xu X, Li W, Zhao Y, Li W, Liu Q, Chen M, Guo N, Wu W, Sun S. The effect of PVAc in silver ink for adhesion and conductivity of conductive pattern. Journal of Materials Research and Technology 2022;18:4277-4284. [DOI: 10.1016/j.jmrt.2022.04.095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. Journal of Electroanalytical Chemistry 2022;909:116140. [DOI: 10.1016/j.jelechem.2022.116140] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Gevaerd A, Silva LRG, Silva TA, Marcolino-junior LH, Bergamini MF, Janegitz BC. Screen-Printed Electrochemical Sensors and Biosensors for Detection of Biomarkers. Advances in Bioelectrochemistry Volume 3 2022. [DOI: 10.1007/978-3-030-97921-8_5] [Reference Citation Analysis]
7 Fan X, Deng D, Chen Z, Qi J, Li Y, Han B, Huan K, Luo L. A sensitive amperometric immunosensor for the detection of carcinoembryonic antigen using ZnMn2O4@reduced graphene oxide composites as signal amplifier. Sensors and Actuators B: Chemical 2021;339:129852. [DOI: 10.1016/j.snb.2021.129852] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
8 Camargo JR, Orzari LO, Araújo DAG, de Oliveira PR, Kalinke C, Rocha DP, Luiz dos Santos A, Takeuchi RM, Munoz RAA, Bonacin JA, Janegitz BC. Development of conductive inks for electrochemical sensors and biosensors. Microchemical Journal 2021;164:105998. [DOI: 10.1016/j.microc.2021.105998] [Cited by in Crossref: 37] [Cited by in F6Publishing: 14] [Article Influence: 18.5] [Reference Citation Analysis]
9 Nochit P, Sub-udom P, Teepoo S. Multiwalled Carbon Nanotube (MWCNT) Based Electrochemical Paper-Based Analytical Device (ePAD) for the Determination of Catechol in Wastewater. Analytical Letters 2021;54:2484-97. [DOI: 10.1080/00032719.2021.1872591] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Hu Y, Chen Y, Tang Q, Liu H. A sandwich-type ECL immunosensor for the sensitive determination of CEA content based on red emission carbon quantum dots as luminophores. New J Chem 2021;45:12613-12621. [DOI: 10.1039/d1nj01002f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Li W, Xu X, Li W, Liu P, Zhao Y, Cen Q, Chen M. One-step synthesis of Ag nanoparticles for fabricating highly conductive patterns using infrared sintering. Journal of Materials Research and Technology 2020;9:142-51. [DOI: 10.1016/j.jmrt.2019.10.039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
12 Solhi E, Hasanzadeh M, Babaie P. Electrochemical paper-based analytical devices (ePADs) toward biosensing: recent advances and challenges in bioanalysis. Anal Methods 2020;12:1398-414. [DOI: 10.1039/d0ay00117a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
13 Zheng S, Li M, Li H, Li C, Li P, Qian L, Yang B. Sandwich-type electrochemical immunosensor for carcinoembryonic antigen detection based on the cooperation of a gold-vertical graphene electrode and gold@silica-methylene blue. J Mater Chem B 2020;8:298-307. [PMID: 31808501 DOI: 10.1039/c9tb01803d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
14 Kung C, Hou C, Wang Y, Fu L. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sensors and Actuators B: Chemical 2019;301:126855. [DOI: 10.1016/j.snb.2019.126855] [Cited by in Crossref: 75] [Cited by in F6Publishing: 80] [Article Influence: 18.8] [Reference Citation Analysis]
15 Noviana E, McCord CP, Clark KM, Jang I, Henry CS. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab Chip 2020;20:9-34. [PMID: 31620764 DOI: 10.1039/c9lc00903e] [Cited by in Crossref: 127] [Cited by in F6Publishing: 132] [Article Influence: 31.8] [Reference Citation Analysis]
16 Primpray V, Chailapakul O, Tokeshi M, Rojanarata T, Laiwattanapaisal W. A paper-based analytical device coupled with electrochemical detection for the determination of dexamethasone and prednisolone in adulterated traditional medicines. Analytica Chimica Acta 2019;1078:16-23. [DOI: 10.1016/j.aca.2019.05.072] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
17 Silva NF, Almeida CM, Magalhães JM, Gonçalves MP, Freire C, Delerue-matos C. Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen. Biosensors and Bioelectronics 2019;141:111317. [DOI: 10.1016/j.bios.2019.111317] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 13.3] [Reference Citation Analysis]
18 Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2020;206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Cited by in Crossref: 131] [Cited by in F6Publishing: 142] [Article Influence: 32.8] [Reference Citation Analysis]
19 Zhu G, Yin X, Jin D, Zhang B, Gu Y, An Y. Paper-based immunosensors: Current trends in the types and applied detection techniques. TrAC Trends in Analytical Chemistry 2019;111:100-17. [DOI: 10.1016/j.trac.2018.09.027] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 15.8] [Reference Citation Analysis]
20 Alba-patiño A, Russell SM, de la Rica R. Origami-enabled signal amplification for paper-based colorimetric biosensors. Sensors and Actuators B: Chemical 2018;273:951-4. [DOI: 10.1016/j.snb.2018.07.019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
21 Fu L, Wang Y. Detection methods and applications of microfluidic paper-based analytical devices. TrAC Trends in Analytical Chemistry 2018;107:196-211. [DOI: 10.1016/j.trac.2018.08.018] [Cited by in Crossref: 144] [Cited by in F6Publishing: 154] [Article Influence: 28.8] [Reference Citation Analysis]
22 Paschoalino WJ, Kogikoski S, Barragan JTC, Giarola JF, Cantelli L, Rabelo TM, Pessanha TM, Kubota LT. Emerging Considerations for the Future Development of Electrochemical Paper-Based Analytical Devices. ChemElectroChem 2019;6:10-30. [DOI: 10.1002/celc.201800677] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 10.4] [Reference Citation Analysis]