BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Haggard DE, Noyes PD, Waters KM, Tanguay RL. Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists. Reprod Toxicol 2018;77:80-93. [PMID: 29458080 DOI: 10.1016/j.reprotox.2018.02.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Ayobahan SU, Alvincz J, Reinwald H, Strompen J, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Comprehensive identification of gene expression fingerprints and biomarkers of sexual endocrine disruption in zebrafish embryo. Ecotoxicol Environ Saf 2023;250:114514. [PMID: 36608563 DOI: 10.1016/j.ecoenv.2023.114514] [Reference Citation Analysis]
2 Omagari R, Yagishita M, Shiraishi F, Nakayama SF, Terasaki M, Tanigawa T, Yamauchi I, Kubo T, Nakajima D. Identification by Liquid Chromatography-Tandem Mass Spectrometry and Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry of the Contributor to the Thyroid Hormone Receptor Agonist Activity in Effluents from Sewage Treatment Plants. Environ Sci Technol 2022. [PMID: 36100216 DOI: 10.1021/acs.est.2c02648] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Wilson LB, Mcclure RS, Waters KM, Simonich MT, Tanguay RL. Concentration-response gene expression analysis in zebrafish reveals phenotypically-anchored transcriptional responses to retene. Front Toxicol 2022;4. [DOI: 10.3389/ftox.2022.950503] [Reference Citation Analysis]
4 Yamauchi I, Hakata T, Ueda Y, Sugawa T, Omagari R, Teramoto Y, Nakayama SF, Nakajima D, Kubo T, Inagaki N. TRIAC disrupts cerebral thyroid hormone action via a negative feedback loop and heterogenous distribution among organs.. [DOI: 10.1101/2022.08.12.502299] [Reference Citation Analysis]
5 Jin M, Dang J, Paudel YN, Wang X, Wang B, Wang L, Li P, Sun C, Liu K. The possible hormetic effects of fluorene-9-bisphenol on regulating hypothalamic-pituitary-thyroid axis in zebrafish. Sci Total Environ 2021;776:145963. [PMID: 33639463 DOI: 10.1016/j.scitotenv.2021.145963] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
6 Walter KM, Singh L, Singh V, Lein PJ. Investigation of NH3 as a selective thyroid hormone receptor modulator in larval zebrafish (Danio rerio). Neurotoxicology 2021;84:96-104. [PMID: 33745965 DOI: 10.1016/j.neuro.2021.03.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Reinwald H, König A, Ayobahan SU, Alvincz J, Sipos L, Göckener B, Böhle G, Shomroni O, Hollert H, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Toxicogenomic fin(ger)prints for thyroid disruption AOP refinement and biomarker identification in zebrafish embryos. Sci Total Environ 2021;760:143914. [PMID: 33333401 DOI: 10.1016/j.scitotenv.2020.143914] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
8 Lu L, Wu H, Cui S, Zhan T, Zhang C, Lu S, Liu W, Zhuang S. Pentabromoethylbenzene Exposure Induces Transcriptome Aberration and Thyroid Dysfunction: In Vitro, in Silico , and in Vivo Investigations. Environ Sci Technol 2020;54:12335-44. [DOI: 10.1021/acs.est.0c03308] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
9 Huang W, Ai W, Lin W, Fang F, Wang X, Huang H, Dahlgren RA, Wang H. Identification of receptors for eight endocrine disrupting chemicals and their underlying mechanisms using zebrafish as a model organism. Ecotoxicol Environ Saf 2020;204:111068. [PMID: 32745784 DOI: 10.1016/j.ecoenv.2020.111068] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
10 Couderq S, Leemans M, Fini JB. Testing for thyroid hormone disruptors, a review of non-mammalian in vivo models. Mol Cell Endocrinol 2020;508:110779. [PMID: 32147522 DOI: 10.1016/j.mce.2020.110779] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
11 Tal T, Yaghoobi B, Lein PJ. Translational Toxicology in Zebrafish. Curr Opin Toxicol 2020;23-24:56-66. [PMID: 32656393 DOI: 10.1016/j.cotox.2020.05.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
12 Walter KM, Dach K, Hayakawa K, Giersiefer S, Heuer H, Lein PJ, Fritsche E. Ontogenetic expression of thyroid hormone signaling genes: An in vitro and in vivo species comparison. PLoS One 2019;14:e0221230. [PMID: 31513589 DOI: 10.1371/journal.pone.0221230] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
13 Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S Jr, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. Environ Health Perspect 2019;127:95001. [PMID: 31487205 DOI: 10.1289/EHP5297] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 11.3] [Reference Citation Analysis]
14 Facchin F, Alviano F, Canaider S, Bianconi E, Rossi M, Bonsi L, Casadei R, Biava PM, Ventura C. Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells. Int J Mol Sci 2019;20:E2646. [PMID: 31146388 DOI: 10.3390/ijms20112646] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
15 Walter KM, Miller GW, Chen X, Harvey DJ, Puschner B, Lein PJ. Changes in thyroid hormone activity disrupt photomotor behavior of larval zebrafish. Neurotoxicology 2019;74:47-57. [PMID: 31121238 DOI: 10.1016/j.neuro.2019.05.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
16 Xu C, Sun X, Niu L, Yang W, Tu W, Lu L, Song S, Liu W. Enantioselective thyroid disruption in zebrafish embryo-larvae via exposure to environmental concentrations of the chloroacetamide herbicide acetochlor. Science of The Total Environment 2019;653:1140-8. [DOI: 10.1016/j.scitotenv.2018.11.037] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
17 Lu Y, Boswell W, Boswell M, Klotz B, Kneitz S, Regneri J, Savage M, Mendoza C, Postlethwait J, Warren WC, Schartl M, Walter RB. Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model. Sci Rep 2019;9:530. [PMID: 30679619 DOI: 10.1038/s41598-018-36656-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
18 Walter KM, Miller GW, Chen X, Yaghoobi B, Puschner B, Lein PJ. Effects of thyroid hormone disruption on the ontogenetic expression of thyroid hormone signaling genes in developing zebrafish (Danio rerio). Gen Comp Endocrinol 2019;272:20-32. [PMID: 30448381 DOI: 10.1016/j.ygcen.2018.11.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
19 Tyagi G, Patel N, Sethi I. A Fine-Tuned Convolution Neural Network Based Approach For Phenotype Classification Of Zebrafish Embryo. Procedia Computer Science 2018;126:1138-1144. [DOI: 10.1016/j.procs.2018.08.051] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]