1 |
Rong Y, Wang Z, Tang P, Wang J, Ji C, Chang J, Zhu Y, Ye W, Bai J, Liu W, Yin G, Yu L, Zhou X, Cai W. Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioactive Materials 2023;23:328-342. [DOI: 10.1016/j.bioactmat.2022.11.011] [Reference Citation Analysis]
|
2 |
Pinos I, Yu J, Pilli N, Kane MA, Amengual J. Functional characterization of interleukin 4 and retinoic acid signaling crosstalk during alternative macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2023;1868:159291. [PMID: 36754230 DOI: 10.1016/j.bbalip.2023.159291] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Sha W, Zhao B, Wei H, Yang Y, Yin H, Gao J, Zhao W, Kong W, Ge G, Lei T. Astragalus polysaccharide ameliorates vascular endothelial dysfunction by stimulating macrophage M2 polarization via potentiating Nrf2/HO-1 signaling pathway. Phytomedicine 2023;112:154667. [PMID: 36842218 DOI: 10.1016/j.phymed.2023.154667] [Reference Citation Analysis]
|
4 |
Jiang T, Qin T, Gao P, Tao Z, Wang X, Wu M, Gu J, Chu B, Zheng Z, Yi J, Xu T, Huang Y, Liu H, Zhao S, Ren Y, Chen J, Yin G. SIRT1 attenuates blood-spinal cord barrier disruption after spinal cord injury by deacetylating p66Shc. Redox Biology 2023;60:102615. [DOI: 10.1016/j.redox.2023.102615] [Reference Citation Analysis]
|
5 |
Ge X, Zhou Z, Yang S, Ye W, Wang Z, Wang J, Xiao C, Cui M, Zhou J, Zhu Y, Wang R, Gao Y, Wang H, Tang P, Zhou X, Wang C, Cai W. Exosomal USP13 derived from microvascular endothelial cells regulates immune microenvironment and improves functional recovery after spinal cord injury by stabilizing IκBα. Cell Biosci 2023;13:55. [PMID: 36915206 DOI: 10.1186/s13578-023-01011-9] [Reference Citation Analysis]
|
6 |
Ma C, Wang C, Zhang Y, Li Y, Fu K, Gong L, Zhou H, Li Y. Phillygenin inhibited M1 macrophage polarization and reduced hepatic stellate cell activation by inhibiting macrophage exosomal miR-125b-5p. Biomed Pharmacother 2023;159:114264. [PMID: 36652738 DOI: 10.1016/j.biopha.2023.114264] [Reference Citation Analysis]
|
7 |
Ge X, Ye W, Zhu Y, Cui M, Zhou J, Xiao C, Jiang D, Tang P, Wang J, Wang Z, Ji C, Zhou X, Cao X, Liu W, Cai W. USP1/UAF1-Stabilized METTL3 Promotes Reactive Astrogliosis and Improves Functional Recovery after Spinal Cord Injury through m(6)A Modification of YAP1 mRNA. J Neurosci 2023;43:1456-74. [PMID: 36653190 DOI: 10.1523/JNEUROSCI.1209-22.2023] [Reference Citation Analysis]
|
8 |
Wang G, Shen X, Song X, Wang N, Wo X, Gao Y. Protective mechanism of gold nanoparticles on human neural stem cells injured by β-amyloid protein through miR-21-5p/SOCS6 pathway. Neurotoxicology 2023;95:12-22. [PMID: 36623431 DOI: 10.1016/j.neuro.2022.12.011] [Reference Citation Analysis]
|
9 |
Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan A, Shahba S, Malvandi AM, Mohammadipour A. Roles of the miR-155 in Neuroinflammation and Neurological Disorders: A Potent Biological and Therapeutic Target. Cell Mol Neurobiol 2023;43:455-67. [PMID: 35107690 DOI: 10.1007/s10571-022-01200-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
10 |
Zhang C, Talifu Z, Xu X, Liu W, Ke H, Pan Y, Li Y, Bai F, Jing Y, Li Z, Li Z, Yang D, Gao F, Du L, Li J, Yu Y. MicroRNAs in spinal cord injury: A narrative review. Front Mol Neurosci 2023;16:1099256. [PMID: 36818651 DOI: 10.3389/fnmol.2023.1099256] [Reference Citation Analysis]
|
11 |
Shen Y, Cai J. The Importance of Using Exosome-Loaded miRNA for the Treatment of Spinal Cord Injury. Mol Neurobiol 2023;60:447-59. [PMID: 36279099 DOI: 10.1007/s12035-022-03088-8] [Reference Citation Analysis]
|
12 |
Xie C, Wang Y, Wang J, Xu Y, Liu H, Guo J, Zhu L. Perlecan Improves Blood Spinal Cord Barrier Repair Through the Integrin β1/ROCK/MLC Pathway After Spinal Cord Injury. Mol Neurobiol 2023;60:51-67. [PMID: 36216996 DOI: 10.1007/s12035-022-03041-9] [Reference Citation Analysis]
|
13 |
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022;13:1084604. [PMID: 36605901 DOI: 10.3389/fphys.2022.1084604] [Reference Citation Analysis]
|
14 |
Bai Y, Guo N, Xu Z, Chen Y, Zhang W, Chen Q, Bi Z. S100A1 expression is increased in spinal cord injury and promotes inflammation, oxidative stress and apoptosis of PC12 cells induced by LPS via ERK signaling. Mol Med Rep 2023;27:30. [PMID: 36524376 DOI: 10.3892/mmr.2022.12917] [Reference Citation Analysis]
|
15 |
Fu SP, Chen SY, Pang QM, Zhang M, Wu XC, Wan X, Wan WH, Ao J, Zhang T. Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury. Front Immunol 2022;13:1014013. [PMID: 36532022 DOI: 10.3389/fimmu.2022.1014013] [Reference Citation Analysis]
|
16 |
Li L, Wen J, Li H, He Y, Cui X, Zhang X, Guan X, Li Z, Cheng M. Exosomal circ-1199 derived from EPCs exposed to oscillating shear stress acts as a sponge of let-7g-5p to promote endothelial-mesenchymal transition of EPCs by increasing HMGA2 expression. Life Sci 2022;312:121223. [PMID: 36435223 DOI: 10.1016/j.lfs.2022.121223] [Reference Citation Analysis]
|
17 |
Hong Z, Cheng J, Ye Y, Chen X, Zhang F. MicroRNA-451 Attenuates the Inflammatory Response of Activated Microglia by Downregulating Nucleotide Binding Oligomerization Domain-Like Receptor Protein 3. World Neurosurg 2022;167:e1128-37. [PMID: 36087911 DOI: 10.1016/j.wneu.2022.08.139] [Reference Citation Analysis]
|
18 |
Li Z, Yu Q, Zhu Q, Yang X, Li Z, Fu J. Applications of machine learning in tumor-associated macrophages. Front Immunol 2022;13:985863. [DOI: 10.3389/fimmu.2022.985863] [Reference Citation Analysis]
|
19 |
Zeng H, Pan T, Zhan M, Hailiwu R, Liu B, Yang H, Li P. Suppression of PFKFB3-driven glycolysis restrains endothelial-to-mesenchymal transition and fibrotic response. Signal Transduct Target Ther 2022;7:303. [PMID: 36045132 DOI: 10.1038/s41392-022-01097-6] [Reference Citation Analysis]
|
20 |
Zhang W, Liu R, Chen Y, Wang M, Du J, Moreno S. Crosstalk between Oxidative Stress and Exosomes. Oxidative Medicine and Cellular Longevity 2022;2022:1-11. [DOI: 10.1155/2022/3553617] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
21 |
Chopra M, Bhagwani A, Kumar H. The Provenance, Providence, and Position of Endothelial Cells in Injured Spinal Cord Vascular Pathology. Cell Mol Neurobiol 2022. [PMID: 35945301 DOI: 10.1007/s10571-022-01266-9] [Reference Citation Analysis]
|
22 |
Feng Y, Peng Y, Jie J, Yang Y, Yang P. The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Front Cell Neurosci 2022;16:969002. [DOI: 10.3389/fncel.2022.969002] [Reference Citation Analysis]
|
23 |
Zhang Y, Ma C, He L, Liao L, Guo C, Wang C, Gong L, Zhou H, Fu K, Peng C, Li Y, J L F. Tetramethylpyrazine Protects Endothelial Injury and Antithrombosis via Antioxidant and Antiapoptosis in HUVECs and Zebrafish. Oxidative Medicine and Cellular Longevity 2022;2022:1-14. [DOI: 10.1155/2022/2232365] [Reference Citation Analysis]
|
24 |
Chen H, Liu N, Zhuang S. Macrophages in Renal Injury, Repair, Fibrosis Following Acute Kidney Injury and Targeted Therapy. Front Immunol 2022;13:934299. [DOI: 10.3389/fimmu.2022.934299] [Reference Citation Analysis]
|
25 |
Yin G, Zhao C, Pei W. Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. Int Immunopharmacol 2022;110:108937. [PMID: 35779490 DOI: 10.1016/j.intimp.2022.108937] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
26 |
Li Y, Yang L, Hu F, Xu J, Ye J, Liu S, Wang L, Zhuo M, Ran B, Zhang H, Ye J, Xiao J. Novel Thermosensitive Hydrogel Promotes Spinal Cord Repair by Regulating Mitochondrial Function. ACS Appl Mater Interfaces 2022;14:25155-72. [PMID: 35618676 DOI: 10.1021/acsami.2c04341] [Reference Citation Analysis]
|
27 |
Zhang Z, Xian S, Bao C, Chen F, Vasconcelos SMM. MicroRNA-299a-5p Protects against Spinal Cord Injury through Activating AMPK Pathway. Oxidative Medicine and Cellular Longevity 2022;2022:1-13. [DOI: 10.1155/2022/8659587] [Reference Citation Analysis]
|
28 |
Dao W, Xiao Z, Yang W, Luo X, Xia H, Lu Z, Knaś M. RGS6 Drives Spinal Cord Injury by Inhibiting AMPK Pathway in Mice. Disease Markers 2022;2022:1-9. [DOI: 10.1155/2022/4535652] [Reference Citation Analysis]
|
29 |
Luo R, Li L, Xiao F, Fu J. LncRNA FLG-AS1 Mitigates Diabetic Retinopathy by Regulating Retinal Epithelial Cell Inflammation, Oxidative Stress, and Apoptosis via miR-380-3p/SOCS6 Axis. Inflammation. [DOI: 10.1007/s10753-022-01665-6] [Reference Citation Analysis]
|
30 |
Sun P, Hamblin MH, Yin K. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022;19. [DOI: 10.1186/s12987-022-00317-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
31 |
Gao JM, Zhang X, Shu GT, Chen NN, Zhang JY, Xu F, Li F, Liu YG, Wei Y, He YQ, Shi JS, Gong QH. Trilobatin rescues cognitive impairment of Alzheimer's disease by targeting HMGB1 through mediating SIRT3/SOD2 signaling pathway. Acta Pharmacol Sin 2022. [PMID: 35292770 DOI: 10.1038/s41401-022-00888-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
32 |
Li J, Liu Y, Cao Y, Wang J, Zhao X, Jiao J, Li J, Zhang K, Yin G. Inhibition of miR-155 Attenuates CD14+ Monocyte-Mediated Inflammatory Response and Oxidative Stress in Psoriasis Through TLR4/MyD88/NF-κB Signaling Pathway. Clin Cosmet Investig Dermatol 2022;15:193-201. [PMID: 35173453 DOI: 10.2147/CCID.S350711] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
33 |
Zhi Y, Huang S, Lina Z. Suppressor of Cytokine Signaling 6 in cancer development and therapy: deciphering its emerging and suppressive roles. Cytokine & Growth Factor Reviews 2022. [DOI: 10.1016/j.cytogfr.2022.02.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Pan D, Liu W, Zhu S, Fan B, Yu N, Ning G, Feng S. Potential of different cells-derived exosomal microRNA cargos for treating spinal cord injury. J Orthop Translat 2021;31:33-40. [PMID: 34760623 DOI: 10.1016/j.jot.2021.09.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
35 |
Liu W, Tang P, Wang J, Ye W, Ge X, Rong Y, Ji C, Wang Z, Bai J, Fan J, Yin G, Cai W. Extracellular vesicles derived from melatonin-preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2. J Pineal Res 2021;71:e12769. [PMID: 34562326 DOI: 10.1111/jpi.12769] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 7.5] [Reference Citation Analysis]
|
36 |
Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab 2021;33:1744-62. [PMID: 34496230 DOI: 10.1016/j.cmet.2021.08.006] [Cited by in Crossref: 96] [Cited by in F6Publishing: 32] [Article Influence: 48.0] [Reference Citation Analysis]
|
37 |
Haque A, Drasites KP, Cox A, Capone M, Myatich AI, Shams R, Matzelle D, Garner DP, Bredikhin M, Shields DC, Vertegel A, Banik NL. Protective Effects of Estrogen via Nanoparticle Delivery to Attenuate Myelin Loss and Neuronal Death after Spinal Cord Injury. Neurochem Res 2021. [PMID: 34269965 DOI: 10.1007/s11064-021-03401-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
38 |
Feng J, Zhang Y, Zhu Z, Gu C, Waqas A, Chen L. Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury. Front Cell Dev Biol 2021;9:703989. [PMID: 34307384 DOI: 10.3389/fcell.2021.703989] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
|