BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ghobadi G, Wiegman EM, Langendijk JA, Widder J, Coppes RP, van Luijk P. A new CT-based method to quantify radiation-induced lung damage in patients. Radiotherapy and Oncology 2015;117:4-8. [DOI: 10.1016/j.radonc.2015.07.017] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Mattonen SA, Ward AD, Palma DA. Pulmonary imaging after stereotactic radiotherapy-does RECIST still apply? Br J Radiol 2016;89:20160113. [PMID: 27245137 DOI: 10.1259/bjr.20160113] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
2 Farr KP, Khalil AA, Møller DS, Bluhme H, Kramer S, Morsing A, Grau C. Time and dose-related changes in lung perfusion after definitive radiotherapy for NSCLC. Radiother Oncol 2018;126:307-11. [PMID: 29203289 DOI: 10.1016/j.radonc.2017.11.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
3 Baumann M, Overgaard J. Bridging the valley of death: The new Radiotherapy & Oncology section “First in man – Translational innovations in radiation oncology”. Radiotherapy and Oncology 2016;118:217-9. [DOI: 10.1016/j.radonc.2016.02.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
4 Chandy E, Szmul A, Stavropoulou A, Jacob J, Veiga C, Landau D, Wilson J, Gulliford S, Fenwick JD, Hawkins MA, Hiley C, McClelland JR. Quantitative Analysis of Radiation-Associated Parenchymal Lung Change. Cancers (Basel) 2022;14:946. [PMID: 35205693 DOI: 10.3390/cancers14040946] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Defraene G, van Elmpt W, De Ruysscher D. Regional lung avoidance by CT numbers to reduce radiation-induced lung damage risk in non-small-cell lung cancer: a simulation study. Acta Oncol 2020;59:201-7. [PMID: 31549562 DOI: 10.1080/0284186X.2019.1669814] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Veiga C, Chandy E, Jacob J, Yip N, Szmul A, Landau D, McClelland JR. Investigation of the evolution of radiation-induced lung damage using serial CT imaging and pulmonary function tests. Radiother Oncol 2020;148:89-96. [PMID: 32344262 DOI: 10.1016/j.radonc.2020.03.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Palma G, Monti S, D'Avino V, Conson M, Liuzzi R, Pressello MC, Donato V, Deasy JO, Quarantelli M, Pacelli R, Cella L. A Voxel-Based Approach to Explore Local Dose Differences Associated With Radiation-Induced Lung Damage. Int J Radiat Oncol Biol Phys 2016;96:127-33. [PMID: 27511851 DOI: 10.1016/j.ijrobp.2016.04.033] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 5.2] [Reference Citation Analysis]
8 Gao Y, Li X, Gao J, Zhang Z, Feng Y, Nie J, Zhu W, Zhang S, Cao J. Metabolomic Analysis of Radiation-Induced Lung Injury in Rats: The Potential Radioprotective Role of Taurine. Dose Response 2019;17:1559325819883479. [PMID: 31700502 DOI: 10.1177/1559325819883479] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
9 Xiao L, Yang G, Chen J, Yang Y, Meng X, Wang X, Wu Q, Huo Z, Yu Q, Yu J, Kong FS, Yuan S. Comparison of predictive powers of functional and anatomic dosimetric parameters for radiation-induced lung toxicity in locally advanced non-small cell lung cancer. Radiother Oncol 2018;129:242-8. [PMID: 30471708 DOI: 10.1016/j.radonc.2018.09.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
10 Defraene G, La Fontaine M, van Kranen S, Reymen B, Belderbos J, Sonke JJ, De Ruysscher D. Radiation-Induced Lung Density Changes on CT Scan for NSCLC: No Impact of Dose-Escalation Level or Volume. Int J Radiat Oncol Biol Phys 2018;102:642-50. [PMID: 30244882 DOI: 10.1016/j.ijrobp.2018.06.038] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
11 Defraene G, van Elmpt W, Crijns W, De Ruysscher D. Regional variability in radiation-induced lung damage can be predicted by baseline CT numbers. Radiotherapy and Oncology 2017;122:300-6. [DOI: 10.1016/j.radonc.2016.11.021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
12 Chen B, Zhang R, Gan Y, Yang L, Li W. Development and clinical application of radiomics in lung cancer. Radiat Oncol 2017;12:154. [PMID: 28915902 DOI: 10.1186/s13014-017-0885-x] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 9.6] [Reference Citation Analysis]
13 Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M. Radiation-Induced Lung Injury: Assessment and Management. Chest 2019;156:150-62. [PMID: 30998908 DOI: 10.1016/j.chest.2019.03.033] [Cited by in Crossref: 87] [Cited by in F6Publishing: 80] [Article Influence: 29.0] [Reference Citation Analysis]
14 Kalman NS, Hugo GD, Mahon RN, Deng X, Mukhopadhyay ND, Weiss E. Diabetes mellitus and radiation induced lung injury after thoracic stereotactic body radiotherapy. Radiother Oncol 2018;129:270-6. [PMID: 30253874 DOI: 10.1016/j.radonc.2018.08.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
15 Begosh-Mayne D, Kumar SS, Toffel S, Okunieff P, O'Dell W. The dose-response characteristics of four NTCP models: using a novel CT-based radiomic method to quantify radiation-induced lung density changes. Sci Rep 2020;10:10559. [PMID: 32601297 DOI: 10.1038/s41598-020-67499-0] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Du F, Liu H, Wang W, Zhang Y, Li J. Correlation Between Lung Density Changes Under Different Dose Gradients and Radiation Pneumonitis-Based on an Analysis of Computed Tomography Scans During Esophageal Cancer Radiotherapy. Front Oncol 2021;11:650764. [PMID: 34123799 DOI: 10.3389/fonc.2021.650764] [Reference Citation Analysis]
17 Christie JR, Lang P, Zelko LM, Palma DA, Abdelrazek M, Mattonen SA. Artificial Intelligence in Lung Cancer: Bridging the Gap Between Computational Power and Clinical Decision-Making. Can Assoc Radiol J. 2021;72:86-97. [PMID: 32735493 DOI: 10.1177/0846537120941434] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Abravan A, Knudtsen IS, Eide HA, Løndalen AM, Helland Å, van Luijk P, Malinen E. A new method to assess pulmonary changes using 18F-fluoro-2-deoxyglucose positron emission tomography for lung cancer patients following radiotherapy. Acta Oncol 2017;56:1597-603. [PMID: 28849707 DOI: 10.1080/0284186X.2017.1349336] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
19 Niezink AGH, de Jong RA, Muijs CT, Langendijk JA, Widder J. Pulmonary Function Changes After Radiotherapy for Lung or Esophageal Cancer: A Systematic Review Focusing on Dose-Volume Parameters. Oncologist 2017;22:1257-64. [PMID: 28550029 DOI: 10.1634/theoncologist.2016-0324] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
20 Veiga C, Landau D, McClelland JR, Ledermann JA, Hawkes D, Janes SM, Devaraj A. Long term radiological features of radiation-induced lung damage. Radiother Oncol 2018;126:300-6. [PMID: 29191458 DOI: 10.1016/j.radonc.2017.11.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
21 Kalman NS, Hugo GD, Kahn JM, Zhao SS, Jan N, Mahon RN, Weiss E. Interobserver reliability in describing radiographic lung changes after stereotactic body radiation therapy. Adv Radiat Oncol 2018;3:655-61. [PMID: 30370367 DOI: 10.1016/j.adro.2018.05.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Veiga C, Landau D, Devaraj A, Doel T, White J, Ngai Y, Hawkes DJ, McClelland JR. Novel CT-Based Objective Imaging Biomarkers of Long-Term Radiation-Induced Lung Damage. Int J Radiat Oncol Biol Phys 2018;102:1287-98. [PMID: 29908943 DOI: 10.1016/j.ijrobp.2018.06.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
23 Ebert N, Baumann M, Troost EG. Radiation-induced lung damage - Clinical risk profiles and predictive imaging on their way to risk-adapted individualized treatment planning? Radiother Oncol 2015;117:1-3. [PMID: 26372342 DOI: 10.1016/j.radonc.2015.09.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
24 Wijsman R, Dankers F, Troost EG, Hoffmann AL, van der Heijden EH, de Geus-oei L, Bussink J. Comparison of toxicity and outcome in advanced stage non-small cell lung cancer patients treated with intensity-modulated (chemo-)radiotherapy using IMRT or VMAT. Radiotherapy and Oncology 2017;122:295-9. [DOI: 10.1016/j.radonc.2016.11.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
25 Bernchou U, Christiansen RL, Asmussen JT, Schytte T, Hansen O, Brink C. Extent and computed tomography appearance of early radiation induced lung injury for non-small cell lung cancer. Radiother Oncol 2017;123:93-8. [PMID: 28259449 DOI: 10.1016/j.radonc.2017.02.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
26 Febbo JA, Gaddikeri RS, Shah PN. Stereotactic Body Radiation Therapy for Early-Stage Non–Small Cell Lung Cancer: A Primer for Radiologists. RadioGraphics 2018;38:1312-36. [DOI: 10.1148/rg.2018170155] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]