BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang W, Yu X, Li Y, Su Z, Jandt KD, Wei G. Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Progress in Polymer Science 2018;80:94-124. [DOI: 10.1016/j.progpolymsci.2017.12.001] [Cited by in Crossref: 109] [Cited by in F6Publishing: 114] [Article Influence: 27.3] [Reference Citation Analysis]
Number Citing Articles
1 Kumar L, Ahuja D. Polymeric Nano-Composite Scaffolds for Bone Tissue Engineering: Review. Biodegradable and Environmental Applications of Bionanocomposites 2023. [DOI: 10.1007/978-3-031-13343-5_7] [Reference Citation Analysis]
2 Huang L, Song F, Ding H, Wang Y, Zhu W. Hydrophobic polyacrylonitrile/pitch electrospun nanofibers for oil spill cleanup: Fabrication, optimization, and kinetic investigations. Journal of Water Process Engineering 2022;50:103210. [DOI: 10.1016/j.jwpe.2022.103210] [Reference Citation Analysis]
3 He P, Yang G, Zhu D, Kong H, Corrales-ureña YR, Colombi Ciacchi L, Wei G. Biomolecule-mimetic nanomaterials for photothermal and photodynamic therapy of cancers: Bridging nanobiotechnology and biomedicine. J Nanobiotechnol 2022;20:483. [DOI: 10.1186/s12951-022-01691-4] [Reference Citation Analysis]
4 Hashemi SA, Ghaffarkhah A, Hosseini E, Bahrani S, Najmi P, Omidifar N, Mousavi SM, Amini M, Ghaedi M, Ramakrishna S, Arjmand M. Recent progress on hybrid fibrous electromagnetic shields: Key protectors of living species against electromagnetic radiation. Matter 2022;5:3807-3868. [DOI: 10.1016/j.matt.2022.09.012] [Reference Citation Analysis]
5 Ganesan A, Jaiganesh R. A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. Carbohydrate Polymer Technologies and Applications 2022. [DOI: 10.1016/j.carpta.2022.100262] [Reference Citation Analysis]
6 Yuan M, Lian J, Han X, Wen J, Gao J, Wang L, Zhang F. Real-time fluorescence dynamics in one-step synthesis of gold nanoclusters coupling with peptide motifs. Colloids and Surfaces B: Biointerfaces 2022;219:112820. [DOI: 10.1016/j.colsurfb.2022.112820] [Reference Citation Analysis]
7 Lu X, Li X, Yu J, Ding B. Nanofibrous hemostatic materials: Structural design, fabrication methods, and hemostatic mechanisms. Acta Biomaterialia 2022. [DOI: 10.1016/j.actbio.2022.10.028] [Reference Citation Analysis]
8 Orasugh JT, Ray SS. Graphene-Based Electrospun Fibrous Materials with Enhanced EMI Shielding: Recent Developments and Future Perspectives. ACS Omega. [DOI: 10.1021/acsomega.2c03579] [Reference Citation Analysis]
9 Rahnama S, Movaffagh J, Shahroodi A, Jirofti N, Fazly Bazzaz BS, Beyraghdari M, Hashemi M, Kalalinia F. Development and characterization of the electrospun melittin-loaded chitosan nanofibers for treatment of acne vulgaris in animal model. Journal of Industrial Textiles 2022;52:152808372211124. [DOI: 10.1177/15280837221112410] [Reference Citation Analysis]
10 Boruah A, Roy A. Advances in hybrid peptide-based self-assembly systems and their applications. Biomater Sci 2022. [PMID: 35899853 DOI: 10.1039/d2bm00775d] [Reference Citation Analysis]
11 Zhao T, Zhang R, He Q, Zhou H, Song X, Gong T, Zhang Z. Partial ligand shielding nanoparticles improve pancreatic ductal adenocarcinoma treatment via a multifunctional paradigm for tumor stroma reprogramming. Acta Biomater 2022;145:122-34. [PMID: 35381402 DOI: 10.1016/j.actbio.2022.03.050] [Reference Citation Analysis]
12 Chen Y, Kong H, Guo L, Wei G. Biomimetic Organic-Inorganic Hybrid Membranes for Removal of Fluoride Ions. Materials (Basel) 2022;15:3457. [PMID: 35629484 DOI: 10.3390/ma15103457] [Reference Citation Analysis]
13 Li Z, Zhu Y, Matson JB. pH-Responsive Self-Assembling Peptide-Based Biomaterials: Designs and Applications. ACS Appl Bio Mater 2022. [PMID: 35505454 DOI: 10.1021/acsabm.2c00188] [Reference Citation Analysis]
14 Sun T, Feng Y, Peng J, Hao Y, Zhang L, Liu L. Cofactors-like peptide self-assembly exhibiting the enhanced catalytic activity in the peptide-metal nanocatalysts. J Colloid Interface Sci 2022;617:511-24. [PMID: 35299125 DOI: 10.1016/j.jcis.2022.02.131] [Reference Citation Analysis]
15 Xia D, Chen J, Zhang Z, Dong M. Emerging polymeric biomaterials and manufacturing techniques in regenerative medicine. Aggregate. [DOI: 10.1002/agt2.176] [Reference Citation Analysis]
16 Wei H, Lin S, Liu W, Li Y, Li B, Yang Y. Stereostructure Dependence Phenomenon on the Self-Assembly of Ala-Ala-Ala Lipotripeptides. Langmuir 2022. [PMID: 35133849 DOI: 10.1021/acs.langmuir.1c02813] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Kang L, Han T, Cong H, Yu B, Shen Y. Recent research progress of biologically active peptides. Biofactors 2022. [PMID: 35080058 DOI: 10.1002/biof.1822] [Reference Citation Analysis]
18 Tserpes K, Tzatzadakis V. Life-Cycle Analysis and Evaluation of Mechanical Properties of a Bio-Based Structural Adhesive. Aerospace 2022;9:64. [DOI: 10.3390/aerospace9020064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Liu B, He P, Kong H, Zhu D, Wei G. Peptide‐Induced Synthesis of Graphene‐Supported Au/Pt Bimetallic Nanoparticles for Electrochemical Biosensor Application. Macro Materials & Eng. [DOI: 10.1002/mame.202100886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Sharma S, Joshi A, Das SK, Shukla SK. Nanotechnology-based bio-tools and techniques for COVID-19 management. Sensing Tools and Techniques for COVID-19 2022. [DOI: 10.1016/b978-0-323-90280-9.00008-0] [Reference Citation Analysis]
21 Liu B, Yao J, Xing J, Yang M, Zhu D, Ren W, Xiang L, Wang Y, Wu A, Wei G. Design, biomimetic synthesis, and tumor photothermal therapy of peptide-based two-dimensional photothermal conversion nanomaterials. Mol Syst Des Eng . [DOI: 10.1039/d2me00127f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Chen T, Lyu Y, Tan M, Yang C, Li Y, Shao C, Zhu Y, Shan A. Fabrication of Supramolecular Antibacterial Nanofibers with Membrane-Disruptive Mechanism. J Med Chem 2021;64:16480-96. [PMID: 34783241 DOI: 10.1021/acs.jmedchem.1c00829] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Jiang Q, Liu X, Liang G, Sun X. Self-assembly of peptide nanofibers for imaging applications. Nanoscale 2021;13:15142-50. [PMID: 34494635 DOI: 10.1039/d1nr04992e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Kong N. Self-Assembly of Bombyx mori Silk Fibroin. Methods Mol Biol 2021;2347:69-82. [PMID: 34472056 DOI: 10.1007/978-1-0716-1574-4_7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021;175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
26 Too NSH, Ho NCW, Adine C, Iyer NG, Fong ELS. Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021;175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
27 Olson E, Plaut JS, Barnhill SA, Sabuncu S, Dambacher CM, Speese SD, Ranganathan SV, Branchaud BP, Yildirim A. Enzyme-Instructed Formation of β-Sheet-Rich Nanoplatelets for Label-Free Protease Sensing. ACS Appl Nano Mater 2021;4:7800-10. [DOI: 10.1021/acsanm.1c01098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kaur H, Roy S. Designing aromatic N-cadherin mimetic short-peptide-based bioactive scaffolds for controlling cellular behaviour. J Mater Chem B 2021;9:5898-913. [PMID: 34263278 DOI: 10.1039/d1tb00598g] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
29 Li Y, Zhu J, Cheng H, Li G, Cho H, Jiang M, Gao Q, Zhang X. Developments of Advanced Electrospinning Techniques: A Critical Review. Adv Materials Technologies 2021;6:2100410. [DOI: 10.1002/admt.202100410] [Cited by in Crossref: 49] [Cited by in F6Publishing: 56] [Article Influence: 49.0] [Reference Citation Analysis]
30 Zhang S, Chen J, Liu J, Pyles H, Baker D, Chen CL, De Yoreo JJ. Engineering Biomolecular Self-Assembly at Solid-Liquid Interfaces. Adv Mater 2021;33:e1905784. [PMID: 32627885 DOI: 10.1002/adma.201905784] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
31 Qiu Z, Tang D. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J Mater Chem B 2020;8:2541-61. [PMID: 32162629 DOI: 10.1039/c9tb02844g] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 55.0] [Reference Citation Analysis]
32 Guo H, Chen Y, Li Y, Zhou W, Xu W, Pang L, Fan X, Jiang S. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review. Composites Part A: Applied Science and Manufacturing 2021;143:106309. [DOI: 10.1016/j.compositesa.2021.106309] [Cited by in Crossref: 60] [Cited by in F6Publishing: 66] [Article Influence: 60.0] [Reference Citation Analysis]
33 Cao S, Zhou L, Liu C, Zhang H, Zhao Y, Zhao Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 2021;181:113164. [PMID: 33744670 DOI: 10.1016/j.bios.2021.113164] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
34 Li L, Zhang J, Liu M, Shi X, Zhang W, Li Y, Zhou N, Zhang Z, Zhu X. Smart supramolecular nanofibers and nanoribbons from uniform amphiphilic azobenzene oligomers. Chem Commun (Camb) 2021;57:2192-5. [PMID: 33527917 DOI: 10.1039/d0cc06994a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Wei G, Ma X, Bai Y, Gong C, Zhang Y. Advances in the Synthesis of Fibrous Proteins and Their Applications. Biopolymers for Biomedical and Biotechnological Applications 2021. [DOI: 10.1002/9783527818310.ch7] [Reference Citation Analysis]
36 Shiga S, Makabe K. Structural analysis of the β-sheet edge of peptide self-assembly using a model protein. Proteins 2021;89:845-52. [PMID: 33576533 DOI: 10.1002/prot.26063] [Reference Citation Analysis]
37 Ikeda K, Horiuchi A, Yoshino M, Shimizu C, Nakao H, Nakano M. Amphipathic Peptide-Phospholipid Nanofibers: Phospholipid Specificity and Dependence on Concentration and Temperature. Langmuir 2021;37:713-21. [PMID: 33400880 DOI: 10.1021/acs.langmuir.0c02819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Wang Y, Xia K, Wang L, Wu M, Sang X, Wan K, Zhang X, Liu X, Wei G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. Small 2021;17:e2005578. [PMID: 33448113 DOI: 10.1002/smll.202005578] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
39 Pérez-pedroza R, Ávila-ramírez A, Khan Z, Moretti M, Hauser CAE, De Santiago GT. Supramolecular Biopolymers for Tissue Engineering. Advances in Polymer Technology 2021;2021:1-23. [DOI: 10.1155/2021/8815006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
40 Padaki M, T. M. S, Prasad D, Déon S, Jadhav AH. Electrospun nanofibers: role of nanofibers in water remediation and effect of experimental variables on their nano topography and application processes. Environ Sci : Water Res Technol 2021;7:2166-205. [DOI: 10.1039/d1ew00393c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Li L, Li Y, Wang S, Ye L, Zhang W, Zhou N, Zhang Z, Zhu X. Morphological modulation of azobenzene-containing tubular polymersomes. Polym Chem 2021;12:3052-9. [DOI: 10.1039/d1py00099c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
42 Ezzati N, Mahjoub AR, Shokrollahi S, Amiri A, Abolhosseini Shahrnoy A. Novel Biocompatible Amino Acids-Functionalized Three-dimensional Graphene Foams: As the Attractive and Promising Cisplatin Carriers for Sustained Release Goals. Int J Pharm 2020;589:119857. [PMID: 32898631 DOI: 10.1016/j.ijpharm.2020.119857] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
43 Cohen-gerassi D, Arnon ZA, Guterman T, Levin A, Ghosh M, Aviv M, Levy D, Knowles TPJ, Shacham-diamand Y, Adler-abramovich L. Phase Transition and Crystallization Kinetics of a Supramolecular System in a Microfluidic Platform. Chem Mater 2020;32:8342-9. [DOI: 10.1021/acs.chemmater.0c02187] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
44 Ding M, Chen G, Xu W, Jia C, Luo H. Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Materials Science 2020;2:264-80. [DOI: 10.1016/j.nanoms.2019.09.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
45 Das R, Gayakvad B, Shinde SD, Rani J, Jain A, Sahu B. Ultrashort Peptides—A Glimpse into the Structural Modifications and Their Applications as Biomaterials. ACS Appl Bio Mater 2020;3:5474-99. [DOI: 10.1021/acsabm.0c00544] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
46 Zhao J, Yang P. Amyloid‐Mediated Fabrication of Organic–Inorganic Hybrid Materials and Their Biomedical Applications. Adv Mater Interfaces 2020;7:2001060. [DOI: 10.1002/admi.202001060] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
47 Li Y, Wu H, Su Z. Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coordination Chemistry Reviews 2020;416:213342. [DOI: 10.1016/j.ccr.2020.213342] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 15.0] [Reference Citation Analysis]
48 Li Q, Yang X, Zhang L, Wang Y, Kong J, Qi W, Liang Y, Su R, He Z. Thermally Induced Structural Transition of Peptide Nanofibers into Nanoparticles with Enhanced Fluorescence Properties. ChemPlusChem 2020;85:1523-8. [DOI: 10.1002/cplu.202000116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Wang CX, Ai SL, Wu B, Huang SW, Liu Z. Biotinylated and fluorophore-incorporated polymeric mixed micelles for tumor cell-specific turn-on fluorescence imaging of Al3. J Mater Chem B 2020;8:3557-65. [PMID: 31560346 DOI: 10.1039/c9tb01508f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Luo S, Feng J, Xiao L, Guo L, Deng L, Du Z, Xue Y, Song X, Sun X, Zhang Z, Fu Y, Gong T. Targeting self-assembly peptide for inhibiting breast tumor progression and metastasis. Biomaterials 2020;249:120055. [PMID: 32315863 DOI: 10.1016/j.biomaterials.2020.120055] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 20.0] [Reference Citation Analysis]
51 Zheng G, Jiang J, Chen H, Kang G, Wang X, Li W, Lin L. Electrohydrodynamic Jet Printing – Principles and Applications in High Sensitivity Biosensing. Materials Science and Technology 2020. [DOI: 10.1002/9783527603978.mst0491] [Reference Citation Analysis]
52 Pandit S, De M. Roles of Edges and Surfaces of Graphene Oxide in Molecular Recognition of Proteins: Implications for Enzymatic Inhibition of α-Chymotrypsin. ACS Appl Nano Mater 2020;3:3829-38. [DOI: 10.1021/acsanm.0c00543] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
53 Huang J, Liu J, Wang J. Optical properties of biomass-derived nanomaterials for sensing, catalytic, biomedical and environmental applications. TrAC Trends in Analytical Chemistry 2020;124:115800. [DOI: 10.1016/j.trac.2019.115800] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
54 Zhang X, Liu W, Wang H, Zhao X, Zhang Z, Nienhaus GU, Shang L, Su Z. Self-assembled thermosensitive luminescent nanoparticles with peptide-Au conjugates for cellular imaging and drug delivery. Chinese Chemical Letters 2020;31:859-64. [DOI: 10.1016/j.cclet.2019.06.032] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
55 Li J, Xu J, Guo W, Zhong W, Li Q, Tan L, Shang L. Ratiometric fluorescence sensors for heparin and heparinase based on enhanced excimer emission of perylene probe induced by cationic silver nanoparticles. Sensors and Actuators B: Chemical 2020;305:127422. [DOI: 10.1016/j.snb.2019.127422] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
56 Wang Y, Zhang W, Gong C, Liu B, Li Y, Wang L, Su Z, Wei G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. Soft Matter 2020;16:10029-45. [DOI: 10.1039/d0sm00966k] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 20.5] [Reference Citation Analysis]
57 Zennifer A, Sekar MP, Subramanian A, Sethuraman S. Nanofiber matrices of protein mimetic bioactive peptides for biomedical applications. Artificial Protein and Peptide Nanofibers 2020. [DOI: 10.1016/b978-0-08-102850-6.00009-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
58 Helbing C, Jandt KD. Novel protein and peptide nanofibrous structures via supramolecular co-assembly. Artificial Protein and Peptide Nanofibers 2020. [DOI: 10.1016/b978-0-08-102850-6.00004-8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Zhang S, Zhang X, Su Z. Biomolecule conjugated metal nanoclusters: bio-inspiration strategies, targeted therapeutics, and diagnostics. J Mater Chem B 2020;8:4176-94. [DOI: 10.1039/c9tb02936b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
60 Wei W, Su Z. Design of functional peptide nanofibers based on amyloid motifs. Artificial Protein and Peptide Nanofibers 2020. [DOI: 10.1016/b978-0-08-102850-6.00007-3] [Reference Citation Analysis]
61 Wei G. Characterization techniques of protein and peptide nanofibers: Self-assembly kinetics. Artificial Protein and Peptide Nanofibers 2020. [DOI: 10.1016/b978-0-08-102850-6.00005-x] [Reference Citation Analysis]
62 Chen Y, Liu B, Guo L, Xiong Z, We G; 1 College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China, 2 Research Center for High-Value Utilization of Waste Biomass, College of Life Science, Qingdao University, 266071 Qingdao, PR China. . AIMS Biophysics 2020;7:411-28. [DOI: 10.3934/biophy.2020028] [Reference Citation Analysis]
63 Mir SM, Anwar A, Dulijan I, Kumar A, Yu X. Protein and peptide nanofiber matrices for the regenerative medicine. Artificial Protein and Peptide Nanofibers 2020. [DOI: 10.1016/b978-0-08-102850-6.00014-0] [Reference Citation Analysis]
64 Sun S, Su Z, Wei G. Self-assembly formation of peptide and protein nanofibers on surfaces and at interfaces. Artificial Protein and Peptide Nanofibers 2020. [DOI: 10.1016/b978-0-08-102850-6.00002-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
65 Pal VK, Jain R, Roy S. Tuning the Supramolecular Structure and Function of Collagen Mimetic Ionic Complementary Peptides via Electrostatic Interactions. Langmuir 2020;36:1003-13. [DOI: 10.1021/acs.langmuir.9b02941] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
66 Zhao Y, Zhang H, Hou Y, Li M, Luo Z. Progress toward Safe Tumor Diagnosis and Therapy via Degradable Inorganic Nanomaterials Constructed with Metabolically Safe Elements. ACS Appl Nano Mater 2020;3:1028-42. [DOI: 10.1021/acsanm.9b01919] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
67 Jin H, Zhang L, Song Y, Liu L. Modulation of structure and mechanical properties of self-assembled peptide nanofibrils and nanosheets. Materials Letters 2019;255:126540. [DOI: 10.1016/j.matlet.2019.126540] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
68 Guo JL, Kim YS, Mikos AG. Biomacromolecules for Tissue Engineering: Emerging Biomimetic Strategies. Biomacromolecules 2019;20:2904-12. [PMID: 31282658 DOI: 10.1021/acs.biomac.9b00792] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
69 Li Z, Cui C, Zhang Z, Meng X, Yan Q, Ouyang J, Xu W, Niu Y, Zhang S. The Investigation of a Multi‐Functional Peptide as Gelator, Dyes Separation Agent and Metal Ions Adsorbent. ChemistrySelect 2019;4:7838-43. [DOI: 10.1002/slct.201901671] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
70 Chen L, Tuo X, Fan X, Xie C, Guo B, Yu J, Hu P, Guo Z. Enhanced Mechanical Properties of Poly(arylene sulfide sulfone) Membrane by Co-electrospinning with Poly(m-xylene adipamide). Chin J Polym Sci 2020;38:63-71. [DOI: 10.1007/s10118-019-2297-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
71 Nie C, Ma L, Li S, Fan X, Yang Y, Cheng C, Zhao W, Zhao C. Recent progresses in graphene based bio-functional nanostructures for advanced biological and cellular interfaces. Nano Today 2019;26:57-97. [DOI: 10.1016/j.nantod.2019.03.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
72 Tang Y, Dai Y, Huang X, Li L, Han B, Cao Y, Zhao J. Self-Assembling Peptide-Based Multifunctional Nanofibers for Electrochemical Identification of Breast Cancer Stem-like Cells. Anal Chem 2019;91:7531-7. [PMID: 31018636 DOI: 10.1021/acs.analchem.8b05359] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
73 Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale 2019;11:4147-82. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Cited by in Crossref: 85] [Cited by in F6Publishing: 89] [Article Influence: 28.3] [Reference Citation Analysis]
74 Lian M, Zhang S, Chen J, Liu X, Chen X, Yang W. Self-Assembling Peptide Artificial Enzyme as an Efficient Detection Prober and Inhibitor for Cancer Cells. ACS Appl Bio Mater 2019;2:2185-91. [DOI: 10.1021/acsabm.9b00160] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
75 Mehrotra S, Chouhan D, Konwarh R, Kumar M, Jadi PK, Mandal BB. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomater Sci Eng 2019;5:2054-78. [DOI: 10.1021/acsbiomaterials.8b01560] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
76 Machado CA, Smith IR, Savin DA. Self-Assembly of Oligo- and Polypeptide-Based Amphiphiles: Recent Advances and Future Possibilities. Macromolecules 2019;52:1899-911. [DOI: 10.1021/acs.macromol.8b02043] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
77 Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019;48:5564-95. [DOI: 10.1039/c8cs01003j] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 23.3] [Reference Citation Analysis]
78 Tanaka M, Takahashi Y, Roach L, Critchley K, Evans SD, Okochi M. Rational screening of biomineralisation peptides for colour-selected one-pot gold nanoparticle syntheses. Nanoscale Adv 2019;1:71-5. [DOI: 10.1039/c8na00075a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
79 Wu C, Liu J, Liu B, He S, Dai G, Xu B, Zhong W. NIR light-responsive short peptide/2D NbSe 2 nanosheets composite hydrogel with controlled-release capacity. J Mater Chem B 2019;7:3134-42. [DOI: 10.1039/c8tb03326a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
80 Puiu M, Bala C. Building switchable peptide-architectures on gold/composite surfaces: New perspectives in electrochemical bioassays. Current Opinion in Electrochemistry 2018;12:13-20. [DOI: 10.1016/j.coelec.2018.05.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
81 Kang Y, Chen P, Shi X, Zhang G, Wang C. Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering. Polymer 2018;156:250-60. [DOI: 10.1016/j.polymer.2018.10.009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 7.8] [Reference Citation Analysis]
82 Bellat V, Ting R, Southard TL, Vahdat L, Molina H, Fernandez J, Aras O, Stokol T, Law B. Functional Peptide Nanofibers with Unique Tumor Targeting and Enzyme-Induced Local Retention Properties. Adv Funct Mater 2018;28:1803969. [PMID: 30505260 DOI: 10.1002/adfm.201803969] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
83 Song H, Zhang X, Liu Y, Su Z. Developing Graphene-Based Nanohybrids for Electrochemical Sensing. Chem Rec 2019;19:534-49. [PMID: 30182467 DOI: 10.1002/tcr.201800084] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 9.8] [Reference Citation Analysis]
84 Carbone ME, Ciriello R, Moscarelli P, Boraldi F, Bianco G, Guerrieri A, Bochicchio B, Pepe A, Quaglino D, Salvi AM. Interactions between elastin-like peptides and an insulating poly(ortho-aminophenol) membrane investigated by AFM and XPS. Anal Bioanal Chem 2018;410:4925-41. [DOI: 10.1007/s00216-018-1142-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
85 Li K, Zhang Z, Li D, Zhang W, Yu X, Liu W, Gong C, Wei G, Su Z. Biomimetic Ultralight, Highly Porous, Shape-Adjustable, and Biocompatible 3D Graphene Minerals via Incorporation of Self-Assembled Peptide Nanosheets. Adv Funct Mater 2018;28:1801056. [DOI: 10.1002/adfm.201801056] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 12.3] [Reference Citation Analysis]
86 Gulseren G, Tansik G, Garifullin R, Tekinay AB, Guler MO. Dentin Phosphoprotein Mimetic Peptide Nanofibers Promote Biomineralization. Macromol Biosci 2019;19:e1800080. [PMID: 29745025 DOI: 10.1002/mabi.201800080] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]