BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol 2020;184:101719. [PMID: 31704314 DOI: 10.1016/j.pneurobio.2019.101719] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Yang X, Xu Y, Gao W, Wang L, Zhao X, Liu G, Fan K, Liu S, Hao H, Qu S, Dong R, Ma X, Ma J. Hyperinsulinemia-induced microglial mitochondrial dynamic and metabolic alterations lead to neuroinflammation in vivo and in vitro. Front Neurosci 2022;16. [DOI: 10.3389/fnins.2022.1036872] [Reference Citation Analysis]
2 Liaudanskaya V, Fiore NJ, Zhang Y, Milton Y, Kelly MF, Coe M, Barreiro A, Rose VK, Shapiro MR, Mullis AS, Shevzov-zebrun A, Blurton-jones M, Whalen MJ, Symes AJ, Georgakoudi I, Nieland TJ, Kaplan DL. Mitochondria dysregulation contributes to secondary neurodegeneration progression post-contusion injury in human 3D in vitro triculture brain tissue model.. [DOI: 10.1101/2022.09.23.509276] [Reference Citation Analysis]
3 Li C, Wang Y, Xing Y, Han J, Zhang Y, Zhang A, Hu J, Hua Y, Bai Y. Regulation of microglia phagocytosis and potential involvement of exercise. Front Cell Neurosci 2022;16:953534. [DOI: 10.3389/fncel.2022.953534] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Benarroch E. What Is the Role of Microglial Metabolism in Inflammation and Neurodegeneration? Neurology 2022;99:99-105. [PMID: 35851556 DOI: 10.1212/WNL.0000000000200920] [Reference Citation Analysis]
5 Chen W, Zhang Y, Zhai X, Xie L, Guo Y, Chen C, Li Y, Wang F, Zhu Z, Zheng L, Wan J, Li P. Microglial phagocytosis and regulatory mechanisms after stroke. J Cereb Blood Flow Metab 2022;:271678X221098841. [PMID: 35491825 DOI: 10.1177/0271678X221098841] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Van Roy Z, Kielian T. Exploring epigenetic reprogramming during central nervous system infection. Immunol Rev 2022. [PMID: 35481573 DOI: 10.1111/imr.13079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Joshi L, Plastira I, Bernhart E, Reicher H, Koshenov Z, Graier WF, Vujic N, Kratky D, Rivera R, Chun J, Sattler W. Lysophosphatidic Acid Receptor 5 (LPA5) Knockout Ameliorates the Neuroinflammatory Response In Vivo and Modifies the Inflammatory and Metabolic Landscape of Primary Microglia In Vitro. Cells 2022;11:1071. [PMID: 35406635 DOI: 10.3390/cells11071071] [Reference Citation Analysis]
8 McManus RM. The Role of Immunity in Alzheimer's Disease. Adv Biol (Weinh) 2022;:e2101166. [PMID: 35254006 DOI: 10.1002/adbi.202101166] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Monsorno K, Buckinx A, Paolicelli RC. Microglial metabolic flexibility: emerging roles for lactate. Trends Endocrinol Metab 2022;33:186-95. [PMID: 34996673 DOI: 10.1016/j.tem.2021.12.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
10 Yu H, Sun T, He X, Wang Z, Zhao K, An J, Wen L, Li J, Li W, Feng J. Association between Parkinson’s Disease and Diabetes Mellitus: From Epidemiology, Pathophysiology and Prevention to Treatment. Aging and disease 2022;13:1591. [DOI: 10.14336/ad.2022.0325] [Reference Citation Analysis]
11 Aramideh JA, Vidal-Itriago A, Morsch M, Graeber MB. Cytokine Signalling at the Microglial Penta-Partite Synapse. Int J Mol Sci 2021;22:13186. [PMID: 34947983 DOI: 10.3390/ijms222413186] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Luo G, Wang X, Cui Y, Cao Y, Zhao Z, Zhang J. Metabolic reprogramming mediates hippocampal microglial M1 polarization in response to surgical trauma causing perioperative neurocognitive disorders. J Neuroinflammation 2021;18:267. [PMID: 34774071 DOI: 10.1186/s12974-021-02318-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
13 Qiu H, Zhao R, Fei G, Pan X, Sang S, Xu Y, Jin B, Jin L, Cheng X, Zhong C. Dynamic Change of Intracellular Metabolism of Microglia Evaluated by Transcriptomics in an Alzheimer's Mouse Model. J Alzheimers Dis 2021;81:517-31. [PMID: 33814454 DOI: 10.3233/JAD-210213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kučić N, Rački V, Šverko R, Vidović T, Grahovac I, Mršić-Pelčić J. Immunometabolic Modulatory Role of Naltrexone in BV-2 Microglia Cells. Int J Mol Sci 2021;22:8429. [PMID: 34445130 DOI: 10.3390/ijms22168429] [Reference Citation Analysis]
15 Korshoj LE, Shi W, Duan B, Kielian T. The Prospect of Nanoparticle Systems for Modulating Immune Cell Polarization During Central Nervous System Infection. Front Immunol 2021;12:670931. [PMID: 34248952 DOI: 10.3389/fimmu.2021.670931] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Peruzzotti-Jametti L, Willis CM, Hamel R, Krzak G, Pluchino S. Metabolic Control of Smoldering Neuroinflammation. Front Immunol 2021;12:705920. [PMID: 34249016 DOI: 10.3389/fimmu.2021.705920] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Stefano GB, Kream RM. Mitochondrial DNA Heteroplasmy as an Informational Reservoir Dynamically Linked to Metabolic and Immunological Processes Associated with COVID-19 Neurological Disorders. Cell Mol Neurobiol 2021. [PMID: 34117968 DOI: 10.1007/s10571-021-01117-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Guillot-Sestier MV, Araiz AR, Mela V, Gaban AS, O'Neill E, Joshi L, Chouchani ET, Mills EL, Lynch MA. Microglial metabolism is a pivotal factor in sexual dimorphism in Alzheimer's disease. Commun Biol 2021;4:711. [PMID: 34112929 DOI: 10.1038/s42003-021-02259-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 21.0] [Reference Citation Analysis]
19 Moraes CA, Zaverucha-do-Valle C, Fleurance R, Sharshar T, Bozza FA, d'Avila JC. Neuroinflammation in Sepsis: Molecular Pathways of Microglia Activation. Pharmaceuticals (Basel) 2021;14:416. [PMID: 34062710 DOI: 10.3390/ph14050416] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
20 Childers GM, Perry CA, Blachut B, Martin N, Bortner CD, Sieber S, Li JL, Fessler MB, Harry GJ. Assessing the Association of Mitochondrial Function and Inflammasome Activation in Murine Macrophages Exposed to Select Mitotoxic Tri-Organotin Compounds. Environ Health Perspect 2021;129:47015. [PMID: 33929904 DOI: 10.1289/EHP8314] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
21 Pamies D, Sartori C, Schvartz D, González-Ruiz V, Pellerin L, Nunes C, Tavel D, Maillard V, Boccard J, Rudaz S, Sanchez JC, Zurich MG. Neuroinflammatory Response to TNFα and IL1β Cytokines Is Accompanied by an Increase in Glycolysis in Human Astrocytes In Vitro. Int J Mol Sci 2021;22:4065. [PMID: 33920048 DOI: 10.3390/ijms22084065] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Joshi L, Plastira I, Bernhart E, Reicher H, Koyani CN, Madl T, Madreiter-Sokolowski C, Koshenov Z, Graier WF, Hallström S, Sattler W. Lysophosphatidic Acid Induces Aerobic Glycolysis, Lipogenesis, and Increased Amino Acid Uptake in BV-2 Microglia. Int J Mol Sci 2021;22:1968. [PMID: 33671212 DOI: 10.3390/ijms22041968] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
23 Yang S, Qin C, Hu ZW, Zhou LQ, Yu HH, Chen M, Bosco DB, Wang W, Wu LJ, Tian DS. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol Dis 2021;152:105290. [PMID: 33556540 DOI: 10.1016/j.nbd.2021.105290] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 27.0] [Reference Citation Analysis]
24 Maher P. Investigations into the Role of Metabolism in the Inflammatory Response of BV2 Microglial Cells. Antioxidants (Basel) 2021;10:109. [PMID: 33466581 DOI: 10.3390/antiox10010109] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Xiao S, Wang C, Yang Q, Xu H, Lu J, Xu K. Rea regulates microglial polarization and attenuates neuronal apoptosis via inhibition of the NF-κB and MAPK signalings for spinal cord injury repair. J Cell Mol Med 2021;25:1371-82. [PMID: 33369103 DOI: 10.1111/jcmm.16220] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
26 Woodward KE, de Jesus P, Esser MJ. Neuroinflammation and Precision Medicine in Pediatric Neurocritical Care: Multi-Modal Monitoring of Immunometabolic Dysfunction. Int J Mol Sci 2020;21:E9155. [PMID: 33271778 DOI: 10.3390/ijms21239155] [Reference Citation Analysis]
27 Guimarães NC, Alves DS, Vilela WR, de-Souza-Ferreira E, Gomes BRB, Ott D, Murgott J, E N de Souza P, de Sousa MV, Galina A, Roth J, Fabro de Bem A, Veiga-Souza FH. Mitochondrial pyruvate carrier as a key regulator of fever and neuroinflammation. Brain Behav Immun 2021;92:90-101. [PMID: 33242651 DOI: 10.1016/j.bbi.2020.11.031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Hornig M. Can the light of immunometabolism cut through "brain fog"? J Clin Invest 2020;130:1102-5. [PMID: 32039912 DOI: 10.1172/JCI134985] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Runtsch MC, Ferrara G, Angiari S. Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 2021;158:36-58. [PMID: 32880969 DOI: 10.1111/jnc.15169] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
30 York EM, Zhang J, Choi HB, MacVicar BA. Neuroinflammatory inhibition of synaptic long-term potentiation requires immunometabolic reprogramming of microglia. Glia 2021;69:567-78. [PMID: 32946147 DOI: 10.1002/glia.23913] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
31 Saito LB, Fernandes JP, Smith MJ, Doan MAL, Branton WG, Schmitt LM, Wuest M, Monaco MC, Major EO, Wuest F, Power C. Intranasal anti-caspase-1 therapy preserves myelin and glucose metabolism in a model of progressive multiple sclerosis. Glia 2021;69:216-29. [PMID: 32882086 DOI: 10.1002/glia.23896] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
32 Harry GJ, Childers G, Giridharan S, Hernandes IL. An association between mitochondria and microglia effector function. What do we think we know? Neuroimmunol Neuroinflamm 2020;7:150-65. [PMID: 32934971 DOI: 10.20517/2347-8659.2020.07] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
33 Chausse B, Lewen A, Poschet G, Kann O. Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain Behav Immun 2020;88:802-14. [PMID: 32446944 DOI: 10.1016/j.bbi.2020.05.052] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
34 Devanney NA, Stewart AN, Gensel JC. Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol 2020;329:113310. [PMID: 32289316 DOI: 10.1016/j.expneurol.2020.113310] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 41.5] [Reference Citation Analysis]