BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Epelbaum J, Guillou J, Gastambide F, Hoyer D, Duron E, Viollet C. Somatostatin, Alzheimer's disease and cognition: An old story coming of age? Progress in Neurobiology 2009;89:153-61. [DOI: 10.1016/j.pneurobio.2009.07.002] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Liu Y, Yang G, Cui W, Zhang Y, Liang X. Regulatory mechanisms of tetramethylpyrazine on central nervous system diseases: A review. Front Pharmacol 2022;13:948600. [DOI: 10.3389/fphar.2022.948600] [Reference Citation Analysis]
2 Tomoda T, Sumitomo A, Newton D, Sibille E. Molecular origin of somatostatin-positive neuron vulnerability. Mol Psychiatry 2022. [PMID: 35145229 DOI: 10.1038/s41380-022-01463-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Neumann WL, Sandoval KE, Mobayen S, Minaeian M, Kukielski SG, Srabony KN, Frare R, Slater O, Farr SA, Niehoff ML, Hospital A, Kontoyianni M, Crider AM, Witt KA. Synthesis and structure-activity relationships of 3,4,5-trisubstituted-1,2,4-triazoles: high affinity and selective somatostatin receptor-4 agonists for Alzheimer's disease treatment. RSC Med Chem 2021;12:1352-65. [PMID: 34458738 DOI: 10.1039/d1md00044f] [Reference Citation Analysis]
4 Ortiz JB, Newbern J, Conrad CD. Chronic stress has different immediate and delayed effects on hippocampal calretinin- and somatostatin-positive cells. Hippocampus 2021;31:221-31. [PMID: 33241879 DOI: 10.1002/hipo.23285] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
5 Prevot TD, Sumitomo A, Tomoda T, Knutson DE, Li G, Mondal P, Banasr M, Cook JM, Sibille E. Reversal of Age-Related Neuronal Atrophy by α5-GABAA Receptor Positive Allosteric Modulation. Cereb Cortex 2021;31:1395-408. [PMID: 33068001 DOI: 10.1093/cercor/bhaa310] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Fernandez-Valenzuela JJ, Sanchez-Varo R, Muñoz-Castro C, De Castro V, Sanchez-Mejias E, Navarro V, Jimenez S, Nuñez-Diaz C, Gomez-Arboledas A, Moreno-Gonzalez I, Vizuete M, Davila JC, Vitorica J, Gutierrez A. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer's disease model. Sci Rep 2020;10:14776. [PMID: 32901091 DOI: 10.1038/s41598-020-71767-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
7 Prévot T, Sibille E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Mol Psychiatry 2021;26:151-67. [PMID: 32346158 DOI: 10.1038/s41380-020-0727-3] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 27.0] [Reference Citation Analysis]
8 Saiz-Sanchez D, Ubeda-Bañon I, Flores-Cuadrado A, Gonzalez-Rodriguez M, Villar-Conde S, Astillero-Lopez V, Martinez-Marcos A. Somatostatin, Olfaction, and Neurodegeneration. Front Neurosci 2020;14:96. [PMID: 32140092 DOI: 10.3389/fnins.2020.00096] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
9 Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020;167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sandoval K, Umbaugh D, House A, Crider A, Witt K. Somatostatin Receptor Subtype-4 Regulates mRNA Expression of Amyloid-Beta Degrading Enzymes and Microglia Mediators of Phagocytosis in Brains of 3xTg-AD Mice. Neurochem Res 2019;44:2670-80. [PMID: 31630317 DOI: 10.1007/s11064-019-02890-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
11 Sanchez-Mejias E, Nuñez-Diaz C, Sanchez-Varo R, Gomez-Arboledas A, Garcia-Leon JA, Fernandez-Valenzuela JJ, Mejias-Ortega M, Trujillo-Estrada L, Baglietto-Vargas D, Moreno-Gonzalez I, Davila JC, Vitorica J, Gutierrez A. Distinct disease-sensitive GABAergic neurons in the perirhinal cortex of Alzheimer's mice and patients. Brain Pathol 2020;30:345-63. [PMID: 31491047 DOI: 10.1111/bpa.12785] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
12 Solarski M, Williams D, Mehrabian M, Wang H, Wille H, Schmitt-Ulms G. The human brain somatostatin interactome: SST binds selectively to P-type family ATPases. PLoS One 2019;14:e0217392. [PMID: 31136617 DOI: 10.1371/journal.pone.0217392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Iwasawa C, Kuzumaki N, Suda Y, Kagawa R, Oka Y, Hattori N, Okano H, Narita M. Reduced expression of somatostatin in GABAergic interneurons derived from induced pluripotent stem cells of patients with parkin mutations. Mol Brain 2019;12:5. [PMID: 30658665 DOI: 10.1186/s13041-019-0426-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
14 Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2019;174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Cited by in Crossref: 104] [Cited by in F6Publishing: 92] [Article Influence: 26.0] [Reference Citation Analysis]
15 Daryaei I, Sandoval K, Witt K, Kontoyianni M, Michael Crider A. Discovery of a 3,4,5-trisubstituted-1,2,4-triazole agonist with high affinity and selectivity at the somatostatin subtype-4 (sst4) receptor. Medchemcomm 2018;9:2083-90. [PMID: 30746066 DOI: 10.1039/c8md00388b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Duron E, Vidal JS, Grousselle D, Gabelle A, Lehmann S, Pasquier F, Bombois S, Buée L, Allinquant B, Schraen-Maschke S, Baret C, Rigaud AS, Hanon O, Epelbaum J. Somatostatin and Neuropeptide Y in Cerebrospinal Fluid: Correlations With Amyloid Peptides Aβ1-42 and Tau Proteins in Elderly Patients With Mild Cognitive Impairment. Front Aging Neurosci 2018;10:297. [PMID: 30327597 DOI: 10.3389/fnagi.2018.00297] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
17 Paik S, Somvanshi RK, Kumar U. Somatostatin Maintains Permeability and Integrity of Blood-Brain Barrier in β-Amyloid Induced Toxicity. Mol Neurobiol 2019;56:292-306. [PMID: 29700775 DOI: 10.1007/s12035-018-1045-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
18 Peineau S, Rabiant K, Pierrefiche O, Potier B. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer's disease. Pharmacol Res 2018;130:385-401. [PMID: 29425728 DOI: 10.1016/j.phrs.2018.01.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
19 Prévôt TD, Viollet C, Epelbaum J, Dominguez G, Béracochéa D, Guillou JL. sst2-receptor gene deletion exacerbates chronic stress-induced deficits: Consequences for emotional and cognitive ageing. Prog Neuropsychopharmacol Biol Psychiatry 2018;86:390-400. [PMID: 29409919 DOI: 10.1016/j.pnpbp.2018.01.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
20 Solarski M, Wang H, Wille H, Schmitt-Ulms G. Somatostatin in Alzheimer's disease: A new Role for an Old Player. Prion 2018;12:1-8. [PMID: 29192843 DOI: 10.1080/19336896.2017.1405207] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
21 Poirel O, Mella S, Videau C, Ramet L, Davoli MA, Herzog E, Katsel P, Mechawar N, Haroutunian V, Epelbaum J, Daumas S, El Mestikawy S. Moderate decline in select synaptic markers in the prefrontal cortex (BA9) of patients with Alzheimer's disease at various cognitive stages. Sci Rep 2018;8:938. [PMID: 29343737 DOI: 10.1038/s41598-018-19154-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
22 Ubeda-Bañon I, Flores-Cuadrado A, Saiz-Sanchez D, Martinez-Marcos A. Differential Effects of Parkinson's Disease on Interneuron Subtypes within the Human Anterior Olfactory Nucleus. Front Neuroanat 2017;11:113. [PMID: 29259548 DOI: 10.3389/fnana.2017.00113] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
23 Lau A, Bourkas M, Lu YQQ, Ostrowski LA, Weber-Adrian D, Figueiredo C, Arshad H, Shoaei SZS, Morrone CD, Matan-Lithwick S, Abraham KJ, Wang H, Schmitt-Ulms G. Functional Amyloids and their Possible Influence on Alzheimer Disease. Discoveries (Craiova) 2017;5:e79. [PMID: 32309597 DOI: 10.15190/d.2017.9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
24 Wang H, Muiznieks LD, Ghosh P, Williams D, Solarski M, Fang A, Ruiz-Riquelme A, Pomès R, Watts JC, Chakrabartty A, Wille H, Sharpe S, Schmitt-Ulms G. Somatostatin binds to the human amyloid β peptide and favors the formation of distinct oligomers. Elife 2017;6:e28401. [PMID: 28650319 DOI: 10.7554/eLife.28401] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
25 Khan M, Huang T, Lin CY, Wu J, Fan BM, Bian ZX. Exploiting cancer's phenotypic guise against itself: targeting ectopically expressed peptide G-protein coupled receptors for lung cancer therapy. Oncotarget 2017;8:104615-37. [PMID: 29262666 DOI: 10.18632/oncotarget.18403] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
26 Stengel A, Taché YF. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Front Neurosci 2017;11:231. [PMID: 28487631 DOI: 10.3389/fnins.2017.00231] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
27 Haidar M, Guèvremont G, Zhang C, Bathgate RAD, Timofeeva E, Smith CM, Gundlach AL. Relaxin-3 inputs target hippocampal interneurons and deletion of hilar relaxin-3 receptors in "floxed-RXFP3" mice impairs spatial memory. Hippocampus 2017;27:529-46. [PMID: 28100033 DOI: 10.1002/hipo.22709] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
28 Prévôt TD, Gastambide F, Viollet C, Henkous N, Martel G, Epelbaum J, Béracochéa D, Guillou JL. Roles of Hippocampal Somatostatin Receptor Subtypes in Stress Response and Emotionality. Neuropsychopharmacology 2017;42:1647-56. [PMID: 27986975 DOI: 10.1038/npp.2016.281] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
29 Chi LM, Wang X, Nan GX. In silico analyses for molecular genetic mechanism and candidate genes in patients with Alzheimer's disease. Acta Neurol Belg 2016;116:543-7. [PMID: 26935318 DOI: 10.1007/s13760-016-0613-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
30 Liguz-Lecznar M, Urban-Ciecko J, Kossut M. Somatostatin and Somatostatin-Containing Neurons in Shaping Neuronal Activity and Plasticity. Front Neural Circuits 2016;10:48. [PMID: 27445703 DOI: 10.3389/fncir.2016.00048] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 8.0] [Reference Citation Analysis]
31 Saiz-Sanchez D, Flores-Cuadrado A, Ubeda-Bañon I, de la Rosa-Prieto C, Martinez-Marcos A. Interneurons in the human olfactory system in Alzheimer's disease. Exp Neurol 2016;276:13-21. [PMID: 26616239 DOI: 10.1016/j.expneurol.2015.11.009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
32 Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides 2015;52:1-18. [PMID: 26149638 DOI: 10.1016/j.npep.2015.06.008] [Cited by in Crossref: 228] [Cited by in F6Publishing: 215] [Article Influence: 32.6] [Reference Citation Analysis]
33 Ádori C, Glück L, Barde S, Yoshitake T, Kovacs GG, Mulder J, Maglóczky Z, Havas L, Bölcskei K, Mitsios N, Uhlén M, Szolcsányi J, Kehr J, Rönnbäck A, Schwartz T, Rehfeld JF, Harkany T, Palkovits M, Schulz S, Hökfelt T. Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer's disease. Acta Neuropathol 2015;129:541-63. [PMID: 25676386 DOI: 10.1007/s00401-015-1394-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
34 Bai L, Zhang X, Li X, Liu N, Lou F, Ma H, Luo X, Ren Y. Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia. Mol Med Rep. 2015;12:1002-1008. [PMID: 25777539 DOI: 10.3892/mmr.2015.3494] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
35 Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, Schröter F, Nuernberg P, Kroll H, Makrantonaki E, Zouboulis CC, Adjaye J. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics 2015;16:84. [PMID: 25765079 DOI: 10.1186/s12864-015-1262-5] [Cited by in Crossref: 79] [Cited by in F6Publishing: 73] [Article Influence: 11.3] [Reference Citation Analysis]
36 Martel G, Simon A, Nocera S, Kalainathan S, Pidoux L, Blum D, Leclère-Turbant S, Diaz J, Geny D, Moyse E, Videau C, Buée L, Epelbaum J, Viollet C. Aging, but not tau pathology, impacts olfactory performances and somatostatin systems in THY-Tau22 mice. Neurobiol Aging 2015;36:1013-28. [PMID: 25433460 DOI: 10.1016/j.neurobiolaging.2014.10.033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
37 Seney ML, Tripp A, McCune S, Lewis DA, Sibille E. Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression. Neurobiol Dis 2015;73:213-9. [PMID: 25315685 DOI: 10.1016/j.nbd.2014.10.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.1] [Reference Citation Analysis]
38 Saiz-Sanchez D, De la Rosa-Prieto C, Ubeda-Banon I, Martinez-Marcos A. Interneurons, tau and amyloid-β in the piriform cortex in Alzheimer's disease. Brain Struct Funct 2015;220:2011-25. [PMID: 24748561 DOI: 10.1007/s00429-014-0771-3] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
39 Fan W, Fu T. Somatostatin modulates LTP in hippocampal CA1 pyramidal neurons: Differential activation conditions in apical and basal dendrites. Neuroscience Letters 2014;561:1-6. [DOI: 10.1016/j.neulet.2013.12.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
40 Borbély É, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides 2013;47:439-50. [DOI: 10.1016/j.npep.2013.10.012] [Cited by in Crossref: 90] [Cited by in F6Publishing: 82] [Article Influence: 10.0] [Reference Citation Analysis]
41 Saiz-Sanchez D, De La Rosa-Prieto C, Ubeda-Bañon I, Martinez-Marcos A. Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer's disease. Anat Rec (Hoboken) 2013;296:1413-23. [PMID: 23904197 DOI: 10.1002/ar.22750] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
42 Sibille E, French B. Biological substrates underpinning diagnosis of major depression. Int J Neuropsychopharmacol 2013;16:1893-909. [PMID: 23672886 DOI: 10.1017/S1461145713000436] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
43 Sandoval KE, Farr SA, Banks WA, Crider AM, Morley JE, Witt KA. Somatostatin receptor subtype-4 agonist NNC 26-9100 mitigates the effect of soluble Aβ(42) oligomers via a metalloproteinase-dependent mechanism. Brain Res 2013;1520:145-56. [PMID: 23669069 DOI: 10.1016/j.brainres.2013.05.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
44 Barbieri F, Bajetto A, Pattarozzi A, Gatti M, Würth R, Thellung S, Corsaro A, Villa V, Nizzari M, Florio T. Peptide receptor targeting in cancer: the somatostatin paradigm. Int J Pept 2013;2013:926295. [PMID: 23476673 DOI: 10.1155/2013/926295] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 6.3] [Reference Citation Analysis]
45 Berchtold NC, Coleman PD, Cribbs DH, Rogers J, Gillen DL, Cotman CW. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease. Neurobiol Aging 2013;34:1653-61. [PMID: 23273601 DOI: 10.1016/j.neurobiolaging.2012.11.024] [Cited by in Crossref: 139] [Cited by in F6Publishing: 131] [Article Influence: 13.9] [Reference Citation Analysis]
46 Martel G, Dutar P, Epelbaum J, Viollet C. Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol (Lausanne) 2012;3:154. [PMID: 23230430 DOI: 10.3389/fendo.2012.00154] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 4.6] [Reference Citation Analysis]
47 Schellekens H, McNamara O, Dinan TG, McCarthy JV, McGlacken GP, Cryan JF. Semagacestat, a γ-secretase inhibitor, activates the growth hormone secretagogue (GHS-R1a) receptor. J Pharm Pharmacol 2013;65:528-38. [PMID: 23488781 DOI: 10.1111/jphp.12010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
48 Scheubert L, Luštrek M, Schmidt R, Repsilber D, Fuellen G. Tissue-based Alzheimer gene expression markers-comparison of multiple machine learning approaches and investigation of redundancy in small biomarker sets. BMC Bioinformatics 2012;13:266. [PMID: 23066814 DOI: 10.1186/1471-2105-13-266] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
49 Machida M, Fujimaki S, Hidaka R, Asashima M, Kuwabara T. The insulin regulatory network in adult hippocampus and pancreatic endocrine system. Stem Cells Int 2012;2012:959737. [PMID: 22988465 DOI: 10.1155/2012/959737] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
50 Villette V, Poindessous-jazat F, Bellessort B, Roullot E, Peterschmitt Y, Epelbaum J, Stéphan A, Dutar P. A new neuronal target for beta-amyloid peptide in the rat hippocampus. Neurobiology of Aging 2012;33:1126.e1-1126.e14. [DOI: 10.1016/j.neurobiolaging.2011.11.024] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
51 Yamashita A, Fuchs E, Taira M, Yamamoto T, Hayashi M. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. J Med Primatol 2012;41:147-57. [PMID: 22512242 DOI: 10.1111/j.1600-0684.2012.00540.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
52 Sandoval KE, Farr SA, Banks WA, Crider AM, Morley JE, Witt KA. Somatostatin receptor subtype-4 agonist NNC 26-9100 decreases extracellular and intracellular Aβ₁₋₄₂ trimers. Eur J Pharmacol 2012;683:116-24. [PMID: 22449380 DOI: 10.1016/j.ejphar.2012.03.020] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
53 Ramírez-Jarquín JO, Lara-Hernández S, López-Guerrero JJ, Aguileta MA, Rivera-Angulo AJ, Sampieri A, Vaca L, Ordaz B, Peña-Ortega F. Somatostatin modulates generation of inspiratory rhythms and determines asphyxia survival. Peptides 2012;34:360-72. [PMID: 22386651 DOI: 10.1016/j.peptides.2012.02.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
54 Gahete MD, Córdoba-Chacón J, Kineman RD, Luque RM, Castaño JP. Role of ghrelin system in neuroprotection and cognitive functions: implications in Alzheimer's disease. Peptides 2011;32:2225-8. [PMID: 21983104 DOI: 10.1016/j.peptides.2011.09.019] [Cited by in Crossref: 73] [Cited by in F6Publishing: 69] [Article Influence: 6.6] [Reference Citation Analysis]
55 Rubio A, Sánchez-Mut JV, García E, Velasquez ZD, Oliver J, Esteller M, Avila J. Epigenetic control of somatostatin and cortistatin expression by β amyloid peptide. J Neurosci Res 2012;90:13-20. [PMID: 21922516 DOI: 10.1002/jnr.22731] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
56 Semenova S, Hoyer D, Geyer MA, Markou A. Somatostatin-28 modulates prepulse inhibition of the acoustic startle response, reward processes and spontaneous locomotor activity in rats. Neuropeptides 2010;44:421-9. [PMID: 20537385 DOI: 10.1016/j.npep.2010.04.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
57 Sandoval KE, Farr SA, Banks WA, Niehoff ML, Morley JE, Crider AM, Witt KA. Chronic peripheral administration of somatostatin receptor subtype-4 agonist NNC 26-9100 enhances learning and memory in SAMP8 mice. Eur J Pharmacol 2011;654:53-9. [PMID: 21185826 DOI: 10.1016/j.ejphar.2010.12.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
58 Fleisher-Berkovich S, Filipovich-Rimon T, Ben-Shmuel S, Hülsmann C, Kummer MP, Heneka MT. Distinct modulation of microglial amyloid β phagocytosis and migration by neuropeptides (i). J Neuroinflammation 2010;7:61. [PMID: 20937084 DOI: 10.1186/1742-2094-7-61] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 4.3] [Reference Citation Analysis]
59 De Bundel D, Aourz N, Kiagiadaki F, Clinckers R, Hoyer D, Kastellakis A, Michotte Y, Thermos K, Smolders I. Hippocampal sst(1) receptors are autoreceptors and do not affect seizures in rats. Neuroreport 2010;21:254-8. [PMID: 20134357 DOI: 10.1097/WNR.0b013e3283353a64] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
60 Troxler T, Hurth K, Schuh K, Schoeffter P, Langenegger D, Enz A, Hoyer D. Decahydroisoquinoline derivatives as novel non-peptidic, potent and subtype-selective somatostatin sst3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters 2010;20:1728-34. [DOI: 10.1016/j.bmcl.2010.01.063] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
61 Lepousez G, Mouret A, Loudes C, Epelbaum J, Viollet C. Somatostatin contributes to in vivo gamma oscillation modulation and odor discrimination in the olfactory bulb. J Neurosci 2010;30:870-5. [PMID: 20089895 DOI: 10.1523/JNEUROSCI.4958-09.2010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]