BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Geetha Bai R, Ninan N, Muthoosamy K, Manickam S. Graphene: A versatile platform for nanotheranostics and tissue engineering. Progress in Materials Science 2018;91:24-69. [DOI: 10.1016/j.pmatsci.2017.08.004] [Cited by in Crossref: 98] [Cited by in F6Publishing: 98] [Article Influence: 24.5] [Reference Citation Analysis]
Number Citing Articles
1 Han N, Zhang W, Fang X, Li Q, Pi W. Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regen Res 2023;18:200. [DOI: 10.4103/1673-5374.343889] [Reference Citation Analysis]
2 Singh DK, Verma RK. Realizing the Application Potential of Graphene-Modified Bionanocomposites for Prosthesis and Implant Applications. Lecture Notes in Mechanical Engineering 2023. [DOI: 10.1007/978-981-19-4571-7_29] [Reference Citation Analysis]
3 Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim H, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. Journal of Molecular Liquids 2022;368:120703. [DOI: 10.1016/j.molliq.2022.120703] [Reference Citation Analysis]
4 Rawat R, Roy S, Goswami T, Mathur A. An Electroanalytical Flexible Biosensor Based on Reduced Graphene Oxide-DNA Hybrids for the Early Detection of Human Papillomavirus-16. Diagnostics 2022;12:2087. [DOI: 10.3390/diagnostics12092087] [Reference Citation Analysis]
5 Abdelhalim AO, Ageev SV, Petrov AV, Meshcheriakov AA, Luttsev MD, Vasina LV, Nashchekina IA, Murin IV, Molchanov OE, Maistrenko DN, Potanin AA, Semenov KN, Sharoyko VV. Graphene oxide conjugated with doxorubicin: Synthesis, bioactivity, and biosafety. Journal of Molecular Liquids 2022;359:119156. [DOI: 10.1016/j.molliq.2022.119156] [Reference Citation Analysis]
6 Mahmoud AED, El-Maghrabi N, Hosny M, Fawzy M. Biogenic synthesis of reduced graphene oxide from Ziziphus spina-christi (Christ's thorn jujube) extracts for catalytic, antimicrobial, and antioxidant potentialities. Environ Sci Pollut Res Int 2022. [PMID: 35859234 DOI: 10.1007/s11356-022-21871-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Solomenko A, G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine, Balabai R, Radchenko T, Tatarenko V, Kryvyi Rih State Pedagogical University, 54 Gagarina Ave., UA-50086 Kryvyi Rih, Ukraine, G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine, G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine. Functionalization of Quasi-Two-Dimensional Materials: Chemical and Strain-Induced Modifications. Prog Phys Met 2022;23:147-238. [DOI: 10.15407/ufm.23.02.147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Raj R, Dixit AR. Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications. 3D Printing and Additive Manufacturing. [DOI: 10.1089/3dp.2021.0209] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Savelyev DN, Grushevski EA, Smirnova MA, Mazaletsky LA, Savinski NG, Bachurin VI, Churilov AB. Electrophoretic Deposition and Structural Analysis of Nanographite Films. Bull Russ Acad Sci Phys 2022;86:556-561. [DOI: 10.3103/s1062873822050215] [Reference Citation Analysis]
10 Lee H, Yoo JM, Ponnusamy NK, Nam SY. 3D-printed hydroxyapatite/gelatin bone scaffolds reinforced with graphene oxide: Optimized fabrication and mechanical characterization. Ceramics International 2022;48:10155-63. [DOI: 10.1016/j.ceramint.2021.12.227] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Kholghi Eshkalak S, Kowsari E, Ramakrishna S. 3D printing of graphene-based composites and their applications in medicine and health care. Innovations in Graphene-Based Polymer Composites 2022. [DOI: 10.1016/b978-0-12-823789-2.00011-x] [Reference Citation Analysis]
12 Rajakumari R, Thomas S, Kalarikkal N. Synthesis of eco-friendly graphene from agricultural wastes. Agri-Waste and Microbes for Production of Sustainable Nanomaterials 2022. [DOI: 10.1016/b978-0-12-823575-1.00010-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Numanoğlu HM, Ersoy H, Akgöz B, Civalek Ö. A new eigenvalue problem solver for thermo‐mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math Meth Appl Sci. [DOI: 10.1002/mma.7942] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 21.0] [Reference Citation Analysis]
14 Ghosal K, Mondal P, Bera S, Ghosh S. Graphene family nanomaterials- opportunities and challenges in tissue engineering applications. FlatChem 2021;30:100315. [DOI: 10.1016/j.flatc.2021.100315] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
15 Jodati H, Yilmaz B, Evis Z. In vitro and in vivo properties of graphene-incorporated scaffolds for bone defect repair. Ceramics International 2021;47:29535-49. [DOI: 10.1016/j.ceramint.2021.07.136] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
16 Liu Y, Ding J, Wang Q, Wen M, Tang T, Liu Y, Yuan R, Li Y, An M. Research progress on the biomedical uses of graphene and its derivatives. New Carbon Materials 2021;36:779-93. [DOI: 10.1016/s1872-5805(21)60073-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
17 Fatima N, Qazi UY, Mansha A, Bhatti IA, Javaid R, Abbas Q, Nadeem N, Rehan ZA, Noreen S, Zahid M. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review. Journal of Industrial and Engineering Chemistry 2021;100:40-58. [DOI: 10.1016/j.jiec.2021.04.050] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 23.0] [Reference Citation Analysis]
18 Wu J, Gao J. Multi-band absorption characteristics of a metal-loaded graphene-based photonic crystal. Physica E: Low-dimensional Systems and Nanostructures 2021;129:114675. [DOI: 10.1016/j.physe.2021.114675] [Reference Citation Analysis]
19 Nosrati H, Sarraf-mamoory R, Canillas Perez M, Le DQS, Zolfaghari Emameh R, Bünger CE. Characteristics of hydroxyapatite-reduced graphene oxide composite powders synthesized via hydrothermal method in the absence and presence of diethylene glycol. Open Ceramics 2021;5:100067. [DOI: 10.1016/j.oceram.2021.100067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Li J, Liu X, Crook JM, Wallace GG. A 3D printed graphene electrode device for enhanced and scalable stem cell culture, osteoinduction and tissue building. Materials & Design 2021;201:109473. [DOI: 10.1016/j.matdes.2021.109473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Huang G, He J, Zhang X, Feng M, Tan Y, Lv C, Huang H, Jin Z. Applications of Lambert-Beer law in the preparation and performance evaluation of graphene modified asphalt. Construction and Building Materials 2021;273:121582. [DOI: 10.1016/j.conbuildmat.2020.121582] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
22 Jha R, Singh A, Sharma PK, Porwal O, Fuloria NK. Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. J Pharm Investig 2021;51:245-80. [DOI: 10.1007/s40005-021-00513-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Nikzamir M, Akbarzadeh A, Panahi Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. Journal of Drug Delivery Science and Technology 2021;61:102316. [DOI: 10.1016/j.jddst.2020.102316] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
24 Liyanaarachchi S, Padumadasa C, Priyadarshana G, Hernandez FCR, Dilhari A, Sahin O, Lakshika S, Wijesinghe G, Weerasekera M, Karunaratne V, Wang Z, Meiyazhagan A, Kottegoda N, Ajayan PM. Magnetite-Functionalized Plumbagin for Therapeutic Applications. ACS Sustainable Chem Eng 2021;9:1361-72. [DOI: 10.1021/acssuschemeng.0c08194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Xu H, Li R, Li Y, He Q, Yan X, Shu T, Yang H, Lü Y, Li Z, Xu R, Xiong C, Xu P. Preparation and Characterization of Poly Lactic Acid/Graphene Oxide/Nerve Growth Factor Scaffold with Electrical Stimulation for Peripheral Nerve Regeneration in vitro. J Wuhan Univ Technol -Mat Sci Edit 2020;35:1149-61. [DOI: 10.1007/s11595-020-2367-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Zhang C, Wang X, Fan S, Lan P, Cao C, Zhang Y. Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering. Colloids and Surfaces B: Biointerfaces 2021;197:111444. [DOI: 10.1016/j.colsurfb.2020.111444] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
27 Bai RG, Tuvikene R. Biomedical applications of graphene. Handbook of Carbon-Based Nanomaterials 2021. [DOI: 10.1016/b978-0-12-821996-6.00013-0] [Reference Citation Analysis]
28 Nosrati H, Sarraf-mamoory R, Zolfaghari Emameh R, Aidun A, Canillas Perez M. Enhancing mechanical properties of hydroxyapatite-reduced graphene oxide nanocomposites by increasing the spark plasma sintering temperature. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2020.1852251] [Reference Citation Analysis]
29 Gholami A, Hashemi SA, Yousefi K, Mousavi SM, Chiang W, Ramakrishna S, Mazraedoost S, Alizadeh A, Omidifar N, Behbudi G, Babapoor A, Li X. 3D Nanostructures for Tissue Engineering, Cancer Therapy, and Gene Delivery. Journal of Nanomaterials 2020;2020:1-24. [DOI: 10.1155/2020/1852946] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
30 Ghosh S, Kitture R. Nanotheranostics. Nanobiotechnology in Diagnosis, Drug Delivery, and Treatment 2020. [DOI: 10.1002/9781119671732.ch4] [Reference Citation Analysis]
31 Nosrati H, Sarraf-mamoory R, Kazemi MH, Canillas Perez M, Shokrollahi M, Zolfaghari Emameh R, Falak R. Characterization of hydroxyapatite-reduced graphene oxide nanocomposites consolidated via high frequency induction heat sintering method. Journal of Asian Ceramic Societies 2020;8:1296-309. [DOI: 10.1080/21870764.2020.1842119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
32 Mousavi SM, Low FW, Hashemi SA, Lai CW, Ghasemi Y, Soroshnia S, Savardashtaki A, Babapoor A, Pynadathu Rumjit N, Goh SM, Amin N, Tiong SK. Development of graphene based nanocomposites towards medical and biological applications. Artificial Cells, Nanomedicine, and Biotechnology 2020;48:1189-205. [DOI: 10.1080/21691401.2020.1817052] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 8.5] [Reference Citation Analysis]
33 Ghitman J, Biru EI, Stan R, Iovu H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Materials & Design 2020;193:108805. [DOI: 10.1016/j.matdes.2020.108805] [Cited by in Crossref: 87] [Cited by in F6Publishing: 92] [Article Influence: 43.5] [Reference Citation Analysis]
34 Cheng K, Xiong W, Li Y, Hao L, Yan C, Li Z, Liu Z, Wang Y, Essa K, Lee L, Gong X, Peijs T. In-situ deposition of three-dimensional graphene on selective laser melted copper scaffolds for high performance applications. Composites Part A: Applied Science and Manufacturing 2020;135:105904. [DOI: 10.1016/j.compositesa.2020.105904] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
35 Liao G, He F, Li Q, Zhong L, Zhao R, Che H, Gao H, Fang B. Emerging graphitic carbon nitride-based materials for biomedical applications. Progress in Materials Science 2020;112:100666. [DOI: 10.1016/j.pmatsci.2020.100666] [Cited by in Crossref: 118] [Cited by in F6Publishing: 129] [Article Influence: 59.0] [Reference Citation Analysis]
36 Nosrati H, Sarraf-mamoory R, Le DQS, Bünger CE. Enhanced fracture toughness of three dimensional graphene- hydroxyapatite nanocomposites by employing the Taguchi method. Composites Part B: Engineering 2020;190:107928. [DOI: 10.1016/j.compositesb.2020.107928] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
37 Su Y, Wang N, Liu B, Du Y, Li R, Meng Y, Feng Y, Shan Z, Meng S. A phototheranostic nanoparticle for cancer therapy fabricated by BODIPY and graphene to realize photo-chemo synergistic therapy and fluorescence/photothermal imaging. Dyes and Pigments 2020;177:108262. [DOI: 10.1016/j.dyepig.2020.108262] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
38 Nosrati H, Sarraf-mamoory R, Ahmadi AH, Canillas Perez M. Synthesis of Graphene Nanoribbons–Hydroxyapatite Nanocomposite Applicable in Biomedicine and Theranostics. JNT 2020;1:6-18. [DOI: 10.3390/jnt1010002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
39 Thamaraiselvan C, Wang J, James DK, Narkhede P, Singh SP, Jassby D, Tour JM, Arnusch CJ. Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology. Materials Today 2020;34:115-31. [DOI: 10.1016/j.mattod.2019.08.014] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 21.0] [Reference Citation Analysis]
40 Saberi A, Bakhsheshi-rad H, Karamian E, Kasiri-asgarani M, Ghomi H. Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties. Journal of Alloys and Compounds 2020;821:153379. [DOI: 10.1016/j.jallcom.2019.153379] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 19.0] [Reference Citation Analysis]
41 Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano 2020;14:2585-627. [PMID: 32031781 DOI: 10.1021/acsnano.9b08133] [Cited by in Crossref: 151] [Cited by in F6Publishing: 124] [Article Influence: 75.5] [Reference Citation Analysis]
42 Hu T, Chen J, Lu X, Chen J, Chen Z, Fu J, Chen Y. Synthesis of Few-Layer Graphene Sheets from Waste Expanded Polystyrene by Dense Fe Cluster Catalysis. ACS Omega 2020;5:4075-82. [PMID: 32149235 DOI: 10.1021/acsomega.9b03743] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
43 Yao J, Yang G. 2D group 6 transition metal dichalcogenides toward wearable electronics and optoelectronics. Journal of Applied Physics 2020;127:030902. [DOI: 10.1063/1.5140795] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
44 Gupta N, Rai DB, Jangid AK, Kulhari H. A Review of Theranostics Applications and Toxicities of Carbon Nanomaterials. Curr Drug Metab 2019;20:506-32. [PMID: 30251600 DOI: 10.2174/1389200219666180925094515] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
45 Liang S, Wang B, Li X, Chu R, Yu H, Zhou S, Wang M, Chen H, Zheng L, Chai Z, Feng W. In vivo pharmacokinetics, transfer and clearance study of graphene oxide by La/Ce dual elemental labelling method. NanoImpact 2020;17:100213. [DOI: 10.1016/j.impact.2020.100213] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
46 Yao J, Yang G. 2D material broadband photodetectors. Nanoscale 2020;12:454-76. [DOI: 10.1039/c9nr09070c] [Cited by in Crossref: 86] [Cited by in F6Publishing: 91] [Article Influence: 43.0] [Reference Citation Analysis]
47 Fang X, Guo H, Zhang W, Fang H, Li Q, Bai S, Zhang P. Reduced graphene oxide–GelMA–PCL hybrid nanofibers for peripheral nerve regeneration. J Mater Chem B 2020;8:10593-601. [DOI: 10.1039/d0tb00779j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
48 Narayanan KB, Kim HD, Han SS. Biocompatibility and hemocompatibility of hydrothermally derived reduced graphene oxide using soluble starch as a reducing agent. Colloids and Surfaces B: Biointerfaces 2020;185:110579. [DOI: 10.1016/j.colsurfb.2019.110579] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 15.0] [Reference Citation Analysis]
49 Budama-kilinc Y, Ozdemir B, Zorlu T, Gok B, Can Egil A. Nanobiomaterials for neural regenerative medicine. Neural Regenerative Nanomedicine 2020. [DOI: 10.1016/b978-0-12-820223-4.00002-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Nosrati H, Sarraf Mamoory R, Svend Le DQ, Bünger CE. Fabrication of gelatin/hydroxyapatite/3D-graphene scaffolds by a hydrogel 3D-printing method. Materials Chemistry and Physics 2020;239:122305. [DOI: 10.1016/j.matchemphys.2019.122305] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
51 Nosrati H, Sarraf-mamoory R, Zolfaghari Emameh R, Le DQS, Canillas Perez M, Bünger CE. Low temperature consolidation of hydroxyapatite-reduced graphene oxide nano-structured powders. Mater Adv 2020;1:1337-1346. [DOI: 10.1039/d0ma00212g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
52 Nosrati H, Mamoory RS, Le DQS, Bünger CE. Preparation of reduced graphene oxide/hydroxyapatite nanocomposite and evaluation of graphene sheets/hydroxyapatite interface. Diamond and Related Materials 2019;100:107561. [DOI: 10.1016/j.diamond.2019.107561] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 9.3] [Reference Citation Analysis]
53 Li J, Liu X, Crook J, Wallace G. 3D graphene-containing structures for tissue engineering. Materials Today Chemistry 2019;14:100199. [DOI: 10.1016/j.mtchem.2019.100199] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
54 Li J, Liu X, Crook JM, Wallace GG. Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. Mater Sci Eng C Mater Biol Appl 2020;107:110312. [PMID: 31761174 DOI: 10.1016/j.msec.2019.110312] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
55 Yan F, Liu Z, Zhang T, Zhang Q, Chen Y, Xie Y, Lei J, Cai L. Biphasic Injectable Bone Cement with Fe3O4/GO Nanocomposites for the Minimally Invasive Treatment of Tumor-Induced Bone Destruction. ACS Biomater Sci Eng 2019;5:5833-43. [PMID: 33405674 DOI: 10.1021/acsbiomaterials.9b00472] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
56 Safavipour M, Kharaziha M, Amjadi E, Karimzadeh F, Allafchian A. TiO2 nanotubes/reduced GO nanoparticles for sensitive detection of breast cancer cells and photothermal performance. Talanta 2020;208:120369. [PMID: 31816724 DOI: 10.1016/j.talanta.2019.120369] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 10.0] [Reference Citation Analysis]
57 Maleki Dizaj S, Sharifi S, Jahangiri A. Electrospun nanofibers as versatile platform in antimicrobial delivery: current state and perspectives. Pharm Dev Technol 2019;24:1187-99. [PMID: 31424308 DOI: 10.1080/10837450.2019.1656238] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
58 Li Y, Feng Z, Huang L, Essa K, Bilotti E, Zhang H, Peijs T, Hao L. Additive manufacturing high performance graphene-based composites: A review. Composites Part A: Applied Science and Manufacturing 2019;124:105483. [DOI: 10.1016/j.compositesa.2019.105483] [Cited by in Crossref: 90] [Cited by in F6Publishing: 93] [Article Influence: 30.0] [Reference Citation Analysis]
59 Sahoo SK, Wei K. A Perspective on Recent Advances in 2D Stanene Nanosheets. Adv Mater Interfaces 2019;6:1900752. [DOI: 10.1002/admi.201900752] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
60 Girão AF, Serrano MC, Completo A, Marques PAAP. Do biomedical engineers dream of graphene sheets? Biomater Sci 2019;7:1228-39. [PMID: 30720810 DOI: 10.1039/c8bm01636d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
61 Dhas N, Parekh K, Pandey A, Kudarha R, Mutalik S, Mehta T. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J Control Release 2019;308:130-61. [PMID: 31310783 DOI: 10.1016/j.jconrel.2019.07.016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
62 Radchenko TM, Sahalianov IY, Tatarenko VA, Prylutskyy YI, Szroeder P, Kempiński M, Kempiński M, Kempiński W. The Impact of Uniaxial Strain and Defect Pattern on Magnetoelectronic and Transport Properties of Graphene. Handbook of Graphene 2019. [DOI: 10.1002/9781119468455.ch14] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
63 Narayanan KB, Choi SM, Han SS. Biofabrication of Lysinibacillus sphaericus-reduced graphene oxide in three-dimensional polyacrylamide/carbon nanocomposite hydrogels for skin tissue engineering. Colloids Surf B Biointerfaces 2019;181:539-48. [PMID: 31185446 DOI: 10.1016/j.colsurfb.2019.06.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
64 Saravanabhavan SS, Rethinasabapathy M, Zsolt S, Kalambettu AB, Elumalai S, Janakiraman M, Huh YS, Natesan B. Graphene oxide functionalized with chitosan based nanoparticles as a carrier of siRNA in regulating Bcl-2 expression on Saos-2 & MG-63 cancer cells and its inflammatory response on bone marrow derived cells from mice. Materials Science and Engineering: C 2019;99:1459-68. [DOI: 10.1016/j.msec.2019.02.047] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
65 Nie C, Ma L, Li S, Fan X, Yang Y, Cheng C, Zhao W, Zhao C. Recent progresses in graphene based bio-functional nanostructures for advanced biological and cellular interfaces. Nano Today 2019;26:57-97. [DOI: 10.1016/j.nantod.2019.03.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
66 Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-Based Smart Platforms for Combined Cancer Therapy. Adv Mater 2019;31:e1800662. [PMID: 30039878 DOI: 10.1002/adma.201800662] [Cited by in Crossref: 164] [Cited by in F6Publishing: 168] [Article Influence: 54.7] [Reference Citation Analysis]
67 Nosrati H, Mamoory RS, Dabir F, Svend Le DQ, Bünger CE, Perez MC, Rodriguez MA. Effects of hydrothermal pressure on in situ synthesis of 3D graphene- hydroxyapatite nano structured powders. Ceramics International 2019;45:1761-9. [DOI: 10.1016/j.ceramint.2018.10.059] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
68 Shueibi O, Zhou Z, Wang X, Yi B, He X, Zhang Y. Effects of GO and rGO incorporated nanofibrous scaffolds on the proliferation of Schwann cells. Biomed Phys Eng Express 2019;5:025002. [DOI: 10.1088/2057-1976/aaf53a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
69 Bai RG, Hilal-alnaqbi A. Polymeric Surface Modification of Graphene. Biomedical Applications of Graphene and 2D Nanomaterials 2019. [DOI: 10.1016/b978-0-12-815889-0.00014-3] [Reference Citation Analysis]
70 Panizo MV, Domínguez-bajo A, Portolés MT, Serrano MC, Marciello M. Nonviral Gene Therapy: Design and Application of Inorganic Nanoplexes. Nucleic Acid Nanotheranostics 2019. [DOI: 10.1016/b978-0-12-814470-1.00011-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
71 Ji DK, Ménard-Moyon C, Bianco A. Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Adv Drug Deliv Rev 2019;138:211-32. [PMID: 30172925 DOI: 10.1016/j.addr.2018.08.010] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 13.7] [Reference Citation Analysis]
72 Saba N, Alothman OY, Almutairi Z, Jawaid M, Asad M. Introduction of graphene-based nanotechnologies. Graphene-Based Nanotechnologies for Energy and Environment. Elsevier; 2019. pp. 3-21. [DOI: 10.1016/b978-0-12-815811-1.00001-6] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
73 Nosrati H, Mamoory RS, Dabir F, Perez MC, Rodriguez MA, Svend Le DQ, Bünger CE. In situ synthesis of three dimensional graphene-hydroxyapatite nano powders via hydrothermal process. Materials Chemistry and Physics 2019;222:251-5. [DOI: 10.1016/j.matchemphys.2018.10.023] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
74 Saliev T, Baiskhanova DM, Akhmetova A, Begimbetova DA, Akishev M, Kulsharova G, Molkenov A, Nurgozhin T, Alekseyeva T, Mikhalovsky S. Impact of electromagnetic fields on in vitro toxicity of silver and graphene nanoparticles. Electromagnetic Biology and Medicine 2018;38:21-31. [DOI: 10.1080/15368378.2018.1534740] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
75 Shekaari A, Jafari M. Finite temperature properties and phase transition behavior of quasi-planar B36 nanocluster from first principles. Mater Res Express 2018;6:025014. [DOI: 10.1088/2053-1591/aaeaa6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
76 Sahalianov I, Radchenko T, Tatarenko V, Prylutskyy Y. Magnetic field-, strain-, and disorder-induced responses in an energy spectrum of graphene. Annals of Physics 2018;398:80-93. [DOI: 10.1016/j.aop.2018.09.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
77 Ramazani A, Abrvash M, Sadighian S, Rostamizadeh K, Fathi M. Preparation and characterization of curcumin loaded gold/graphene oxide nanocomposite for potential breast cancer therapy. Res Chem Intermed 2018;44:7891-904. [DOI: 10.1007/s11164-018-3593-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
78 Kholkhoev BC, Buinov AS, Bal’zhinov SA, Makotchenko VG, Fedorov VE, Aksenova NA, Kozlova MN, Solov’eva AB, Timashev PS, Burdukovskii VF. Electrically Conductive Composites Based on Chitosan and Graphene Stabilized by Pluronic F-108. Polym Sci Ser A 2018;60:678-682. [DOI: 10.1134/s0965545x18050073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
79 Wang C, Fu Q, Wen D. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion. Zeitschrift für Physikalische Chemie 2018;232:1647-74. [DOI: 10.1515/zpch-2018-1170] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
80 Ninan N, Albrecht H, Blencowe A. Mammalian Cell-Based Assays for Studying Bio-Nano Interactions. Characterization of Nanomaterials 2018. [DOI: 10.1016/b978-0-08-101973-3.00005-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
81 Zhang C, Ren J, Zhou J, Cui M, Li N, Han B, Chen Q. Facile fabrication of a 3,4,9,10-perylene tetracarboxylic acid functionalized graphene–multiwalled carbon nanotube–gold nanoparticle nanocomposite for highly sensitive and selective electrochemical detection of dopamine. Analyst 2018;143:3075-84. [DOI: 10.1039/c8an00559a] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 7.5] [Reference Citation Analysis]
82 Golzar H, Yazdian F, Hashemi M, Omidi M, Mohammadrezaei D, Rashedi H, Farahani M, Ghasemi N, Shabani shayeh J, Tayebi L. Optimizing the hybrid nanostructure of functionalized reduced graphene oxide/silver for highly efficient cancer nanotherapy. New J Chem 2018;42:13157-68. [DOI: 10.1039/c8nj01764f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
83 Yin S, Chen P, Sun H, Sun K, Wu Y, Shi C, He Y, Fu Y, Guo X. Fabrication of the graphene honeycomb structure as a scaffold for the study of cell growth. New J Chem 2018;42:6299-304. [DOI: 10.1039/c8nj00477c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
84 Cheng C, Yu S, Teng T. Fabrication and Characterization of Carbon-Based Nanofluids through the Water Vortex Trap Method. Journal of Nanomaterials 2018;2018:1-13. [DOI: 10.1155/2018/3264621] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]