BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J, Petri G. Networks beyond pairwise interactions: Structure and dynamics. Physics Reports 2020;874:1-92. [DOI: 10.1016/j.physrep.2020.05.004] [Cited by in Crossref: 91] [Cited by in F6Publishing: 15] [Article Influence: 45.5] [Reference Citation Analysis]
Number Citing Articles
1 Millán AP, Gori G, Battiston F, Enss T, Defenu N. Complex networks with tuneable spectral dimension as a universality playground. Phys Rev Research 2021;3. [DOI: 10.1103/physrevresearch.3.023015] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Katchanov YL, Markova YV. Dynamics of senses of new physics discourse: Co-keywords analysis. Journal of Informetrics 2022;16:101245. [DOI: 10.1016/j.joi.2021.101245] [Reference Citation Analysis]
3 Deng Y. Recommender Systems Based on Graph Embedding Techniques: A Review. IEEE Access 2022;10:51587-633. [DOI: 10.1109/access.2022.3174197] [Reference Citation Analysis]
4 Tang Y, Shi D, Lü L. Optimizing higher-order network topology for synchronization of coupled phase oscillators. Commun Phys 2022;5. [DOI: 10.1038/s42005-022-00870-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Young J, Petri G, Peixoto TP. Hypergraph reconstruction from network data. Commun Phys 2021;4. [DOI: 10.1038/s42005-021-00637-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
6 Gatica M, Cofré R, Mediano PAM, Rosas FE, Orio P, Diez I, Swinnen SP, Cortes JM. High-Order Interdependencies in the Aging Brain. Brain Connect 2021. [PMID: 33858199 DOI: 10.1089/brain.2020.0982] [Reference Citation Analysis]
7 Stožer A, Šterk M, Paradiž Leitgeb E, Markovič R, Skelin Klemen M, Ellis CE, Križančić Bombek L, Dolenšek J, Macdonald PE, Gosak M. From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Front Endocrinol 2022;13:922640. [DOI: 10.3389/fendo.2022.922640] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Presigny C, Holme P, Barrat A. Building surrogate temporal network data from observed backbones. Phys Rev E 2021;103:052304. [PMID: 34134319 DOI: 10.1103/PhysRevE.103.052304] [Reference Citation Analysis]
9 Larock T, Xu M, Eliassi-rad T. A path-based approach to analyzing the global liner shipping network. EPJ Data Sci 2022;11. [DOI: 10.1140/epjds/s13688-022-00331-z] [Reference Citation Analysis]
10 Liu C, Chen L, Yuan Q, Wu H, Huang W. Revealing Dynamic Spatial Structures of Urban Mobility Networks and the Underlying Evolutionary Patterns. IJGI 2022;11:237. [DOI: 10.3390/ijgi11040237] [Reference Citation Analysis]
11 Wang X, Zheng Z, Xu C. Collective dynamics of phase oscillator populations with three-body interactions. Phys Rev E 2021;104:054208. [PMID: 34942717 DOI: 10.1103/PhysRevE.104.054208] [Reference Citation Analysis]
12 Noonan J, Lambiotte R. Dynamics of majority rule on hypergraphs. Phys Rev E 2021;104:024316. [PMID: 34525590 DOI: 10.1103/PhysRevE.104.024316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Torres-knoop A, Schamboeck V, Govindarajan N, Iedema PD, Kryven I. Effect of different monomer precursors with identical functionality on the properties of the polymer network. Commun Mater 2021;2. [DOI: 10.1038/s43246-021-00154-x] [Reference Citation Analysis]
14 Papanikolaou N, Vaccario G, Hormann E, Lambiotte R, Schweitzer F. Consensus from group interactions: An adaptive voter model on hypergraphs. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.054307] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Felipe-Lucia MR, Guerrero AM, Alexander SM, Ashander J, Baggio JA, Barnes ML, Bodin Ö, Bonn A, Fortin MJ, Friedman RS, Gephart JA, Helmstedt KJ, Keyes AA, Kroetz K, Massol F, Pocock MJO, Sayles J, Thompson RM, Wood SA, Dee LE. Conceptualizing ecosystem services using social-ecological networks. Trends Ecol Evol 2021:S0169-5347(21)00317-7. [PMID: 34969536 DOI: 10.1016/j.tree.2021.11.012] [Reference Citation Analysis]
16 Ghorbanchian R, Restrepo JG, Torres JJ, Bianconi G. Higher-order simplicial synchronization of coupled topological signals. Commun Phys 2021;4. [DOI: 10.1038/s42005-021-00605-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
17 Kachhvah AD, Jalan S. First-order route to antiphase clustering in adaptive simplicial complexes. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.l062203] [Reference Citation Analysis]
18 Majhi S, Rakshit S, Ghosh D. Oscillation suppression and chimera states in time-varying networks. Chaos 2022;32:042101. [DOI: 10.1063/5.0087291] [Reference Citation Analysis]
19 Li H, Xu W, Song S, Wang W, Perc M. The dynamics of epidemic spreading on signed networks. Chaos, Solitons & Fractals 2021;151:111294. [DOI: 10.1016/j.chaos.2021.111294] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 21.0] [Reference Citation Analysis]
20 Lohe MA. Combined higher-order interactions of mixed symmetry on the sphere. Chaos 2022;32:023114. [DOI: 10.1063/5.0079696] [Reference Citation Analysis]
21 Rosas FE, Mediano PAM, Luppi AI, Varley TF, Lizier JT, Stramaglia S, Jensen HJ, Marinazzo D. Disentangling high-order mechanisms and high-order behaviours in complex systems. Nat Phys . [DOI: 10.1038/s41567-022-01548-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Skardal PS, Arenas A. Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching. Commun Phys 2020;3. [DOI: 10.1038/s42005-020-00485-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
23 Xin B, Huang J, Zhang L, Zheng C, Zhou Y, Lu J, Wang X. Dynamic topology analysis for spatial patterns of multifocal lesions on MRI. Med Image Anal 2021;76:102267. [PMID: 34929461 DOI: 10.1016/j.media.2021.102267] [Reference Citation Analysis]
24 Ou Y, Guo Q, Xing J, Liu J. Identification of spreading influence nodes via multi-level structural attributes based on the graph convolutional network. Expert Systems with Applications 2022;203:117515. [DOI: 10.1016/j.eswa.2022.117515] [Reference Citation Analysis]
25 Bianconi G. Statistical physics of exchangeable sparse simple networks, multiplex networks, and simplicial complexes. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.034310] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Kontorovsky NL, Pinasco JP, Vazquez F. Random multi-player games. Chaos 2022;32:033128. [DOI: 10.1063/5.0080137] [Reference Citation Analysis]
27 de Amorim Filho EC, Moreira RA, N Santos FA. The Euler characteristic and topological phase transitions in complex systems. J Phys Complex 2022;3:025003. [DOI: 10.1088/2632-072x/ac664c] [Reference Citation Analysis]
28 St-onge G, Iacopini I, Latora V, Barrat A, Petri G, Allard A, Hébert-dufresne L. Influential groups for seeding and sustaining nonlinear contagion in heterogeneous hypergraphs. Commun Phys 2022;5. [DOI: 10.1038/s42005-021-00788-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Feng M, Porter MA. Spatial applications of topological data analysis: Cities, snowflakes, random structures, and spiders spinning under the influence. Phys Rev Research 2020;2. [DOI: 10.1103/physrevresearch.2.033426] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
30 Xu C, Skardal PS. Spectrum of extensive multiclusters in the Kuramoto model with higher-order interactions. Phys Rev Research 2021;3. [DOI: 10.1103/physrevresearch.3.013013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
31 Kundu S, Ghosh D. Higher-order interactions promote chimera states. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.l042202] [Reference Citation Analysis]
32 Jost J, Mulas R, Estrada E. Normalized Laplace operators for hypergraphs with real coefficients. Journal of Complex Networks 2021;9:cnab009. [DOI: 10.1093/comnet/cnab009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Ristič D, Gosak M. Interlayer Connectivity Affects the Coherence Resonance and Population Activity Patterns in Two-Layered Networks of Excitatory and Inhibitory Neurons. Front Comput Neurosci 2022;16:885720. [DOI: 10.3389/fncom.2022.885720] [Reference Citation Analysis]
34 Tudisco F, Higham DJ. Node and edge nonlinear eigenvector centrality for hypergraphs. Commun Phys 2021;4. [DOI: 10.1038/s42005-021-00704-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Chowdhary S, Kumar A, Cencetti G, Iacopini I, Battiston F. Simplicial contagion in temporal higher-order networks. J Phys Complex 2021;2:035019. [DOI: 10.1088/2632-072x/ac12bd] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
36 Galam S, Cheon T. Tipping Points in Opinion Dynamics: A Universal Formula in Five Dimensions. Front Phys 2020;8:566580. [DOI: 10.3389/fphy.2020.566580] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
37 León I, Pazó D. Enlarged Kuramoto model: Secondary instability and transition to collective chaos. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.l042201] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Peixoto TP. Disentangling Homophily, Community Structure, and Triadic Closure in Networks. Phys Rev X 2022;12. [DOI: 10.1103/physrevx.12.011004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Kuehn C, Berglund N, Bick C, Engel M, Hurth T, Iuorio A, Soresina C. A general view on double limits in differential equations. Physica D: Nonlinear Phenomena 2022;431:133105. [DOI: 10.1016/j.physd.2021.133105] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Chen W, Pan J, Han W, Huang C; School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China, College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China, Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China. . Acta Phys Sin 2022;71:110201. [DOI: 10.7498/aps.70.20212436] [Reference Citation Analysis]
41 Gosak M, Duh M, Markovič R, Perc M. Community lockdowns in social networks hardly mitigate epidemic spreading. New J Phys 2021;23:043039. [DOI: 10.1088/1367-2630/abf459] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 16.0] [Reference Citation Analysis]
42 Li M, Liu R, Lü L, Hu M, Xu S, Zhang Y. Percolation on complex networks: Theory and application. Physics Reports 2021;907:1-68. [DOI: 10.1016/j.physrep.2020.12.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
43 Mulas R, Kuehn C, Böhle T, Jost J. Random walks and Laplacians on hypergraphs: When do they match? Discrete Applied Mathematics 2022;317:26-41. [DOI: 10.1016/j.dam.2022.04.009] [Reference Citation Analysis]
44 Wang W, Li W, Lin T, Wu T, Pan L, Liu Y. Generalized k -core percolation on higher-order dependent networks. Applied Mathematics and Computation 2022;420:126793. [DOI: 10.1016/j.amc.2021.126793] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Skardal PS, Xu C. Tiered synchronization in coupled oscillator populations with interaction delays and higher-order interactions. Chaos 2022;32:053120. [DOI: 10.1063/5.0086305] [Reference Citation Analysis]
46 Skardal PS, Arenas A. Memory selection and information switching in oscillator networks with higher-order interactions. J Phys Complex 2020;2:015003. [DOI: 10.1088/2632-072x/abbd4c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
47 Wang D, Zhao Y, Luo J, Leng H. Simplicial SIRS epidemic models with nonlinear incidence rates. Chaos 2021;31:053112. [PMID: 34240944 DOI: 10.1063/5.0040518] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Iacobello G, Ridolfi L, Scarsoglio S. A review on turbulent and vortical flow analyses via complex networks. Physica A: Statistical Mechanics and its Applications 2021;563:125476. [DOI: 10.1016/j.physa.2020.125476] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
49 Xu C, Hui PM. Enhanced cooperation in multiplayer snowdrift games with random and dynamic groupings. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.054309] [Reference Citation Analysis]
50 Maletić S, Andjelković M, Rajković M. Potential grouping of nodes induced by higher-order structures in complex networks. Chaos 2021;31:123115. [PMID: 34972312 DOI: 10.1063/5.0069444] [Reference Citation Analysis]
51 Musciotto F, Battiston F, Mantegna RN. Detecting informative higher-order interactions in statistically validated hypergraphs. Commun Phys 2021;4. [DOI: 10.1038/s42005-021-00710-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Li Y, Li Q, Li T, Zhou Z, Xu Y, Yang Y, Chen J, Guo H. Construction and Multiple Feature Classification Based on a High-Order Functional Hypernetwork on fMRI Data. Front Neurosci 2022;16:848363. [DOI: 10.3389/fnins.2022.848363] [Reference Citation Analysis]
53 Iacopini I, Di Bona G, Ubaldi E, Loreto V, Latora V. Interacting Discovery Processes on Complex Networks. Phys Rev Lett 2020;125:248301. [PMID: 33412072 DOI: 10.1103/PhysRevLett.125.248301] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
54 Banerjee PS, Mandal SN, De D, Maiti B. CGARP: Chaos genetic algorithm-based relay node placement for multifaceted heterogeneous wireless sensor networks. Innovations Syst Softw Eng. [DOI: 10.1007/s11334-022-00439-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Gosak M, Milojević M, Duh M, Skok K, Perc M. Networks behind the morphology and structural design of living systems. Physics of Life Reviews 2022. [DOI: 10.1016/j.plrev.2022.03.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
56 Cimini G, Carra A, Didomenicantonio L, Zaccaria A. Meta-validation of bipartite network projections. Commun Phys 2022;5. [DOI: 10.1038/s42005-022-00856-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Maltseva S, Kornilov V, Barakhnin V, Gorbunov A, Song Y. Self-Organization in Network Sociotechnical Systems. Complexity 2022;2022:1-24. [DOI: 10.1155/2022/5714395] [Reference Citation Analysis]
58 Lee Y, Lee J, Oh SM, Lee D, Kahng B. Homological percolation transitions in growing simplicial complexes. Chaos 2021;31:041102. [PMID: 34251264 DOI: 10.1063/5.0047608] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
59 Monge JJ, McDonald N, McDonald GW. A review of graphical methods to map the natural hazard-to-wellbeing risk chain in a socio-ecological system. Sci Total Environ 2021;803:149947. [PMID: 34487905 DOI: 10.1016/j.scitotenv.2021.149947] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
60 Ran Y, Deng X, Wang X, Jia T. A generalized linear threshold model for an improved description of the spreading dynamics. Chaos 2020;30:083127. [PMID: 32872812 DOI: 10.1063/5.0011658] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Battiston F, Amico E, Barrat A, Bianconi G, Ferraz de Arruda G, Franceschiello B, Iacopini I, Kéfi S, Latora V, Moreno Y, Murray MM, Peixoto TP, Vaccarino F, Petri G. The physics of higher-order interactions in complex systems. Nat Phys 2021;17:1093-8. [DOI: 10.1038/s41567-021-01371-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
62 Liu S, Chen X, Yao C, Zhang Z. Stability of multiple attractors in the unidirectionally coupled circular networks of limit cycle oscillators. Communications in Nonlinear Science and Numerical Simulation 2022. [DOI: 10.1016/j.cnsns.2022.106456] [Reference Citation Analysis]
63 Zhang Y, Latora V, Motter AE. Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions. Commun Phys 2021;4. [DOI: 10.1038/s42005-021-00695-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
64 Qu R, Feng H, Xu C, Hu B. Analysis of Hypergraph Signals via High-Order Total Variation. Symmetry 2022;14:543. [DOI: 10.3390/sym14030543] [Reference Citation Analysis]
65 Kovalenko K, Dai X, Alfaro-Bittner K, Raigorodskii AM, Perc M, Boccaletti S. Contrarians Synchronize beyond the Limit of Pairwise Interactions. Phys Rev Lett 2021;127:258301. [PMID: 35029445 DOI: 10.1103/PhysRevLett.127.258301] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
66 Wang J, Wang Z, Yu P, Xu Z. The impact of different strategy update mechanisms on information dissemination under hyper network vision. Communications in Nonlinear Science and Numerical Simulation 2022. [DOI: 10.1016/j.cnsns.2022.106585] [Reference Citation Analysis]
67 Arora V, Sanguinetti G. Challenges for machine learning in RNA-protein interaction prediction. Stat Appl Genet Mol Biol 2022. [PMID: 35073469 DOI: 10.1515/sagmb-2021-0087] [Reference Citation Analysis]
68 Wegner AE, Olhede S. Atomic subgraphs and the statistical mechanics of networks. Phys Rev E 2021;103:042311. [PMID: 34005963 DOI: 10.1103/PhysRevE.103.042311] [Reference Citation Analysis]
69 Chowdhury S, Huntsman S, Yutin M. Path homologies of motifs and temporal network representations. Appl Netw Sci 2022;7. [DOI: 10.1007/s41109-021-00441-z] [Reference Citation Analysis]
70 Fan J, Yin Q, Xia C, Perc M. Epidemics on multilayer simplicial complexes. Proc R Soc A 2022;478:20220059. [DOI: 10.1098/rspa.2022.0059] [Reference Citation Analysis]
71 Centeno EGZ, Moreni G, Vriend C, Douw L, Santos FAN. A hands-on tutorial on network and topological neuroscience. Brain Struct Funct 2022. [PMID: 35142909 DOI: 10.1007/s00429-021-02435-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Zhang X, Huang N, Sun L, Zheng X, Guo Z. Modeling congestion considering sequential coupling applications: A network-cell-based method. Physica A: Statistical Mechanics and its Applications 2022;604:127668. [DOI: 10.1016/j.physa.2022.127668] [Reference Citation Analysis]
73 Burgio G, Arenas A, Gómez S, Matamalas JT. Network clique cover approximation to analyze complex contagions through group interactions. Commun Phys 2021;4. [DOI: 10.1038/s42005-021-00618-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
74 Krishnagopal S, Bianconi G. Spectral detection of simplicial communities via Hodge Laplacians. Phys Rev E 2021;104:064303. [PMID: 35030957 DOI: 10.1103/PhysRevE.104.064303] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
75 Lucas M, Cencetti G, Battiston F. Multiorder Laplacian for synchronization in higher-order networks. Phys Rev Research 2020;2. [DOI: 10.1103/physrevresearch.2.033410] [Cited by in Crossref: 13] [Article Influence: 6.5] [Reference Citation Analysis]
76 Valente A, De Domenico M, Artime O. Non-Markovian random walks characterize network robustness to nonlocal cascades. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.044126] [Reference Citation Analysis]
77 DeVille L. Consensus on simplicial complexes: Results on stability and synchronization. Chaos 2021;31:023137. [PMID: 33653041 DOI: 10.1063/5.0037433] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Yang L, Zhang L, Yang D. Asymmetric micro-dynamics in spatial anonymous public goods game. Applied Mathematics and Computation 2022;415:126737. [DOI: 10.1016/j.amc.2021.126737] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Mahler BI. Analysis of Contagion Maps on a Class of Networks That Are Spatially Embedded in a Torus. SIAM J Appl Math 2021;81:1416-40. [DOI: 10.1137/18m1235910] [Reference Citation Analysis]
80 Millán AP, Ghorbanchian R, Defenu N, Battiston F, Bianconi G. Local topological moves determine global diffusion properties of hyperbolic higher-order networks. Phys Rev E 2021;104:054302. [PMID: 34942729 DOI: 10.1103/PhysRevE.104.054302] [Reference Citation Analysis]
81 Torres L, Blevins AS, Bassett D, Eliassi-rad T. The Why, How, and When of Representations for Complex Systems. SIAM Rev 2021;63:435-85. [DOI: 10.1137/20m1355896] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
82 Boguñá M, Bonamassa I, De Domenico M, Havlin S, Krioukov D, Serrano MÁ. Network geometry. Nat Rev Phys 2021;3:114-35. [DOI: 10.1038/s42254-020-00264-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 13.0] [Reference Citation Analysis]
83 Iacopini I, Petri G, Baronchelli A, Barrat A. Group interactions modulate critical mass dynamics in social convention. Commun Phys 2022;5. [DOI: 10.1038/s42005-022-00845-y] [Reference Citation Analysis]
84 Ferreira CH, Murai F, Silva AP, Almeida JM, Trevisan M, Vassio L, Mellia M, Drago I. On the dynamics of political discussions on Instagram: A network perspective. Online Social Networks and Media 2021;25:100155. [DOI: 10.1016/j.osnem.2021.100155] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
85 Li W, Xue X, Pan L, Lin T, Wang W. Competing spreading dynamics in simplicial complex. Applied Mathematics and Computation 2022;412:126595. [DOI: 10.1016/j.amc.2021.126595] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
86 Mancastroppa M, Guizzo A, Castellano C, Vezzani A, Burioni R. Sideward contact tracing and the control of epidemics in large gatherings. J R Soc Interface 2022;19:20220048. [PMID: 35537473 DOI: 10.1098/rsif.2022.0048] [Reference Citation Analysis]
87 Shang Y. Sombor index and degree-related properties of simplicial networks. Applied Mathematics and Computation 2022;419:126881. [DOI: 10.1016/j.amc.2021.126881] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
88 Wang D, Zhao Y, Leng H, Small M. A social communication model based on simplicial complexes. Physics Letters A 2020;384:126895. [DOI: 10.1016/j.physleta.2020.126895] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
89 Mulas R, Casey MJ. Estimating cellular redundancy in networks of genetic expression. Math Biosci 2021;341:108713. [PMID: 34560090 DOI: 10.1016/j.mbs.2021.108713] [Reference Citation Analysis]
90 St-Onge G, Sun H, Allard A, Hébert-Dufresne L, Bianconi G. Universal Nonlinear Infection Kernel from Heterogeneous Exposure on Higher-Order Networks. Phys Rev Lett 2021;127:158301. [PMID: 34678024 DOI: 10.1103/PhysRevLett.127.158301] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 St-Onge G, Thibeault V, Allard A, Dubé LJ, Hébert-Dufresne L. Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks. Phys Rev E 2021;103:032301. [PMID: 33862710 DOI: 10.1103/PhysRevE.103.032301] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
92 Gürcan Ö. Dynamical network models of the turbulent cascade. Physica D: Nonlinear Phenomena 2021;426:132983. [DOI: 10.1016/j.physd.2021.132983] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Xu Y, Feng M, Zhu Y, Xia C. Multi-player snowdrift game on scale-free simplicial complexes. Physica A: Statistical Mechanics and its Applications 2022;604:127698. [DOI: 10.1016/j.physa.2022.127698] [Reference Citation Analysis]
94 Civilini A, Anbarci N, Latora V. Evolutionary Game Model of Group Choice Dilemmas on Hypergraphs. Phys Rev Lett 2021;127:268301. [PMID: 35029481 DOI: 10.1103/PhysRevLett.127.268301] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Gozzi N, Scudeler M, Paolotti D, Baronchelli A, Perra N. Self-initiated behavioral change and disease resurgence on activity-driven networks. Phys Rev E 2021;104:014307. [PMID: 34412322 DOI: 10.1103/PhysRevE.104.014307] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
96 Song B, Jiang G, Song Y, Yang J, Wang X, Guo YJ. A Novel Metric to Quantify the Real-Time Robustness of Complex Networks With Respect to Epidemic Models. Front Phys 2022;9:805674. [DOI: 10.3389/fphy.2021.805674] [Reference Citation Analysis]
97 Jusup M, Holme P, Kanazawa K, Takayasu M, Romić I, Wang Z, Geček S, Lipić T, Podobnik B, Wang L, Luo W, Klanjšček T, Fan J, Boccaletti S, Perc M. Social physics. Physics Reports 2022;948:1-148. [DOI: 10.1016/j.physrep.2021.10.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 11.0] [Reference Citation Analysis]
98 Qu H, Li J, Wang W, Xin W, Zhou C, He Z. New Insight into the Coupled Grain–Disaster–Economy System Based on a Multilayer Network: An Empirical Study in China. IJGI 2022;11:59. [DOI: 10.3390/ijgi11010059] [Reference Citation Analysis]
99 Schweitzer F, Andres G. Social nucleation: Group formation as a phase transition. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.044301] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
100 Cui K, Khudabukhsh WR, Koeppl H. Motif-based mean-field approximation of interacting particles on clustered networks. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.l042301] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Xu X, He S, Zhang L. Dynamics of the threshold model on hypergraphs. Chaos 2022;32:023125. [DOI: 10.1063/5.0075667] [Reference Citation Analysis]
102 Bertagnolli G, De Domenico M. Diffusion geometry of multiplex and interdependent systems. Phys Rev E 2021;103:042301. [PMID: 34005952 DOI: 10.1103/PhysRevE.103.042301] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Lotito QF, Musciotto F, Montresor A, Battiston F. Higher-order motif analysis in hypergraphs. Commun Phys 2022;5. [DOI: 10.1038/s42005-022-00858-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
104 Yen TC. Construction of simplicial complexes with prescribed degree-size sequences. Phys Rev E 2021;104:L042303. [PMID: 34781564 DOI: 10.1103/PhysRevE.104.L042303] [Reference Citation Analysis]
105 Fülöp T, Desroches M, A Cohen A, Santos FAN, Rodrigues S. Why we should use topological data analysis in ageing: Towards defining the “topological shape of ageing”. Mechanisms of Ageing and Development 2020;192:111390. [DOI: 10.1016/j.mad.2020.111390] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
106 Parastesh F, Mehrabbeik M, Rajagopal K, Jafari S, Perc M. Synchronization in Hindmarsh–Rose neurons subject to higher-order interactions. Chaos 2022;32:013125. [DOI: 10.1063/5.0079834] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
107 Shang Y. A system model of three-body interactions in complex networks: consensus and conservation. Proc R Soc A 2022;478:20210564. [DOI: 10.1098/rspa.2021.0564] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Sun H, Bianconi G. Higher-order percolation processes on multiplex hypergraphs. Phys Rev E 2021;104:034306. [PMID: 34654130 DOI: 10.1103/PhysRevE.104.034306] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
109 Schweitzer F. Group relations, resilience and the I Ching. Physica A: Statistical Mechanics and its Applications 2022;603:127630. [DOI: 10.1016/j.physa.2022.127630] [Reference Citation Analysis]
110 Skardal PS, Arola-fernández L, Taylor D, Arenas A. Higher-order interactions can better optimize network synchronization. Phys Rev Research 2021;3. [DOI: 10.1103/physrevresearch.3.043193] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
111 Yang C, Scarpino SV. A Family of Fitness Landscapes Modeled through Gene Regulatory Networks. Entropy 2022;24:622. [DOI: 10.3390/e24050622] [Reference Citation Analysis]
112 Kumar A, Chowdhary S, Capraro V, Perc M. Evolution of honesty in higher-order social networks. Phys Rev E 2021;104:054308. [PMID: 34942761 DOI: 10.1103/PhysRevE.104.054308] [Reference Citation Analysis]
113 Anwar MS, Ghosh D. Intralayer and interlayer synchronization in multiplex network with higher-order interactions. Chaos 2022;32:033125. [PMID: 35364852 DOI: 10.1063/5.0074641] [Reference Citation Analysis]
114 Ghavasieh A, De Domenico M. Statistical physics of network structure and information dynamics. J Phys Complex 2022;3:011001. [DOI: 10.1088/2632-072x/ac457a] [Reference Citation Analysis]
115 Torrisi G, Kühn R, Annibale A. Uncovering the non-equilibrium stationary properties in sparse Boolean networks. J Stat Mech 2022;2022:053303. [DOI: 10.1088/1742-5468/ac66d0] [Reference Citation Analysis]
116 Eriksson A, Edler D, Rojas A, de Domenico M, Rosvall M. How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs. Commun Phys 2021;4. [DOI: 10.1038/s42005-021-00634-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
117 Chodrow PS, Veldt N, Benson AR. Generative hypergraph clustering: From blockmodels to modularity. Sci Adv 2021;7:eabh1303. [PMID: 34233880 DOI: 10.1126/sciadv.abh1303] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
118 Ferraz de Arruda G, Tizzani M, Moreno Y. Phase transitions and stability of dynamical processes on hypergraphs. Commun Phys 2021;4. [DOI: 10.1038/s42005-021-00525-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
119 Grbić J, Wu J, Xia K, Wei G. . FoDS 2022;0:0. [DOI: 10.3934/fods.2022002] [Reference Citation Analysis]
120 Landry NW, Restrepo JG. Hypergraph assortativity: A dynamical systems perspective. Chaos 2022;32:053113. [DOI: 10.1063/5.0086905] [Reference Citation Analysis]
121 Jhun B. Topological analysis of the latent geometry of a complex network. Chaos 2022;32:013116. [DOI: 10.1063/5.0073107] [Reference Citation Analysis]
122 Schlager D, Clauß K, Kuehn C. Stability analysis of multiplayer games on adaptive simplicial complexes. Chaos 2022;32:053128. [DOI: 10.1063/5.0078863] [Reference Citation Analysis]
123 Higham K, Contisciani M, De Bacco C. Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships. Technological Forecasting and Social Change 2022;179:121628. [DOI: 10.1016/j.techfore.2022.121628] [Reference Citation Analysis]
124 Vasiliauskaite V, Evans TS, Expert P. Cycle analysis of Directed Acyclic Graphs. Physica A: Statistical Mechanics and its Applications 2022;596:127097. [DOI: 10.1016/j.physa.2022.127097] [Reference Citation Analysis]
125 Kovalenko K, Sendiña-nadal I, Khalil N, Dainiak A, Musatov D, Raigorodskii AM, Alfaro-bittner K, Barzel B, Boccaletti S. Growing scale-free simplices. Commun Phys 2021;4. [DOI: 10.1038/s42005-021-00538-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
126 Chutani M, Tadić B, Gupte N. Hysteresis and synchronization processes of Kuramoto oscillators on high-dimensional simplicial complexes with competing simplex-encoded couplings. Phys Rev E 2021;104:034206. [PMID: 34654179 DOI: 10.1103/PhysRevE.104.034206] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
127 Trask N, Huang A, Hu X. Enforcing exact physics in scientific machine learning: A data-driven exterior calculus on graphs. Journal of Computational Physics 2022;456:110969. [DOI: 10.1016/j.jcp.2022.110969] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
128 González González C, Mora Van Cauwelaert E, Boyer D, Perfecto I, Vandermeer J, Benítez M. High-order interactions maintain or enhance structural robustness of a coffee agroecosystem network. Ecological Complexity 2021;47:100951. [DOI: 10.1016/j.ecocom.2021.100951] [Reference Citation Analysis]
129 Hickok A, Kureh Y, Brooks HZ, Feng M, Porter MA. A Bounded-Confidence Model of Opinion Dynamics on Hypergraphs. SIAM J Appl Dyn Syst 2022;21:1-32. [DOI: 10.1137/21m1399427] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]