BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Agrawal K, Das V, Vyas P, Hajdúch M. Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacology & Therapeutics 2018;188:45-79. [DOI: 10.1016/j.pharmthera.2018.02.006] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 16.5] [Reference Citation Analysis]
Number Citing Articles
1 Zeng Y, Zhang J, Yue J, Han G, Liu W, Liu L, Lin X, Zha Y, Liu J, Tan Y. The Role of DACT Family Members in Tumorigenesis and Tumor Progression. Int J Biol Sci 2022;18:4532-44. [PMID: 35864965 DOI: 10.7150/ijbs.70784] [Reference Citation Analysis]
2 Cheon H, Gelvosa MN, Kim SA, Song H, Jeon JY. Lymphatic channel sheet of polydimethylsiloxane for preventing secondary lymphedema in the rat upper limb model. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10371] [Reference Citation Analysis]
3 Zhang S, Duan S, Xie Z, Bao W, Xu B, Yang W, Zhou L. Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress. Front Pharmacol 2022;13:924817. [PMID: 35754474 DOI: 10.3389/fphar.2022.924817] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Fadayomi I, Sari S, Kitchen M, Reynisson J, Forsyth N, Li W. Sesquiterpene Lactones Modulated DNA Methylation through Inhibition of DNMTs in Ovarian Cancer Cells. Pharmacological Research - Modern Chinese Medicine 2022;3:100074. [DOI: 10.1016/j.prmcm.2022.100074] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Kumar VE, Nambiar R, De Souza C, Nguyen A, Chien J, Lam KS. Targeting Epigenetic Modifiers of Tumor Plasticity and Cancer Stem Cell Behavior. Cells 2022;11:1403. [DOI: 10.3390/cells11091403] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
6 Blaauboer A, van Koetsveld PM, Mustafa DAM, Dumas J, Dogan F, van Zwienen S, van Eijck CHJ, Hofland LJ. The Class I HDAC Inhibitor Valproic Acid Strongly Potentiates Gemcitabine Efficacy in Pancreatic Cancer by Immune System Activation. Biomedicines 2022;10:517. [DOI: 10.3390/biomedicines10030517] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Yates J, Boeva V. Deciphering the etiology and role in oncogenic transformation of the CpG island methylator phenotype: a pan-cancer analysis. Brief Bioinform 2022:bbab610. [PMID: 35134107 DOI: 10.1093/bib/bbab610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Yoshida-Sakai N, Watanabe T, Yamamoto Y, Ureshino H, Kamachi K, Kurahashi Y, Fukuda-Kurahashi Y, Kimura S. Adult T-cell leukemia-lymphoma acquires resistance to DNA demethylating agents through dysregulation of enzymes involved in pyrimidine metabolism. Int J Cancer 2021. [PMID: 34913485 DOI: 10.1002/ijc.33901] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Al-Rawashde FA, Johan MF, Taib WRW, Ismail I, Johari SATT, Almajali B, Al-Wajeeh AS, Nazari Vishkaei M, Al-Jamal HAN. Thymoquinone Inhibits Growth of Acute Myeloid Leukemia Cells through Reversal SHP-1 and SOCS-3 Hypermethylation: In Vitro and In Silico Evaluation. Pharmaceuticals (Basel) 2021;14:1287. [PMID: 34959687 DOI: 10.3390/ph14121287] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M, Gowher H. Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer 2021;3:zcab045. [PMID: 34870206 DOI: 10.1093/narcan/zcab045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Chequin A, Costa LE, de Campos FF, Moncada ADB, de Lima LTF, Sledz LR, Picheth GF, Adami ER, Acco A, Gonçalves MB, Manica GCM, Valdameri G, de Noronha L, Telles JEQ, Jandrey EHF, Costa ET, Costa FF, de Souza EM, Ramos EAS, Klassen G. Antitumoral activity of liraglutide, a new DNMT inhibitor in breast cancer cells in vitro and in vivo. Chem Biol Interact 2021;349:109641. [PMID: 34534549 DOI: 10.1016/j.cbi.2021.109641] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zhao G, Wang Q, Li S, Wang X. Resistance to Hypomethylating Agents in Myelodysplastic Syndrome and Acute Myeloid Leukemia From Clinical Data and Molecular Mechanism. Front Oncol 2021;11:706030. [PMID: 34650913 DOI: 10.3389/fonc.2021.706030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Pappalardi MB, Keenan K, Cockerill M, Kellner WA, Stowell A, Sherk C, Wong K, Pathuri S, Briand J, Steidel M, Chapman P, Groy A, Wiseman AK, Mchugh CF, Campobasso N, Graves AP, Fairweather E, Werner T, Raoof A, Butlin RJ, Rueda L, Horton JR, Fosbenner DT, Zhang C, Handler JL, Muliaditan M, Mebrahtu M, Jaworski J, Mcnulty DE, Burt C, Eberl HC, Taylor AN, Ho T, Merrihew S, Foley SW, Rutkowska A, Li M, Romeril SP, Goldberg K, Zhang X, Kershaw CS, Bantscheff M, Jurewicz AJ, Minthorn E, Grandi P, Patel M, Benowitz AB, Mohammad HP, Gilmartin AG, Prinjha RK, Ogilvie D, Carpenter C, Heerding D, Baylin SB, Jones PA, Cheng X, King BW, Luengo JI, Jordan AM, Waddell I, Kruger RG, Mccabe MT. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat Cancer 2021;2:1002-17. [DOI: 10.1038/s43018-021-00249-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 31.0] [Reference Citation Analysis]
14 Chen JF, Yan Q. The roles of epigenetics in cancer progression and metastasis. Biochem J 2021;478:3373-93. [PMID: 34520519 DOI: 10.1042/BCJ20210084] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
15 Hu C, Liu X, Zeng Y, Liu J, Wu F. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. Clin Epigenetics 2021;13:166. [PMID: 34452630 DOI: 10.1186/s13148-021-01154-x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 24.0] [Reference Citation Analysis]
16 Wang SC, Chang YC, Wu MY, Yu CY, Chen SL, Sung WW. Intravesical Instillation of Azacitidine Suppresses Tumor Formation through TNF-R1 and TRAIL-R2 Signaling in Genotoxic Carcinogen-Induced Bladder Cancer. Cancers (Basel) 2021;13:3933. [PMID: 34439091 DOI: 10.3390/cancers13163933] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
17 Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021;11:631037. [PMID: 34168976 DOI: 10.3389/fonc.2021.631037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Lamprianidou E, Kordella C, Kazachenka A, Zoulia E, Bernard E, Filia A, Laidou S, Garantziotis P, Vassilakopoulos TP, Papageorgiou SG, Pappa V, Galanopoulos AG, Viniou N, Nakou E, Kalafati L, Chatzidimitriou A, Kassiotis G, Papaemmanuil E, Mitroulis I, Kotsianidis I. Modulation of IL-6/STAT3 signaling axis in CD4+FOXP3- T cells represents a potential antitumor mechanism of azacitidine. Blood Adv 2021;5:129-42. [PMID: 33570632 DOI: 10.1182/bloodadvances.2020002351] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
19 McKenna S, García-Gutiérrez L. Resistance to Targeted Therapy and RASSF1A Loss in Melanoma: What Are We Missing? Int J Mol Sci 2021;22:5115. [PMID: 34066022 DOI: 10.3390/ijms22105115] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
20 Huang YS, Tseng WY, Clanchy FIL, Topping LM, Ogbechi J, McNamee K, Perocheau D, Chiang NY, Ericsson P, Sundstedt A, Xue ZT, Salford LG, Sjögren HO, Stone TW, Lin HH, Luo SF, Williams RO. Pharmacological modulation of T cell immunity results in long-term remission of autoimmune arthritis. Proc Natl Acad Sci U S A 2021;118:e2100939118. [PMID: 33941676 DOI: 10.1073/pnas.2100939118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021;67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
22 Sanaei M, Kavoosi F, Sahraeian H. The Effects of 5-Aza-2'-Deoxycytidine and Valproic Acid on Apoptosis Induction and Cell Growth Inhibition in Colon Cancer HT 29 Cell Line. Int J Prev Med 2021;12:33. [PMID: 34249282 DOI: 10.4103/ijpvm.IJPVM_410_19] [Reference Citation Analysis]
23 Kordella C, Lamprianidou E, Kotsianidis I. Mechanisms of Action of Hypomethylating Agents: Endogenous Retroelements at the Epicenter. Front Oncol 2021;11:650473. [PMID: 33768008 DOI: 10.3389/fonc.2021.650473] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
24 Vural S, Palmisano A, Reinhold WC, Pommier Y, Teicher BA, Krushkal J. Association of expression of epigenetic molecular factors with DNA methylation and sensitivity to chemotherapeutic agents in cancer cell lines. Clin Epigenetics 2021;13:49. [PMID: 33676569 DOI: 10.1186/s13148-021-01026-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
25 Chen X, Zhu X, Wei A, Chen F, Gao Q, Lu K, Jiang Q, Cao W. Nrf2 epigenetic derepression induced by running exercise protects against osteoporosis. Bone Res 2021;9:15. [PMID: 33637693 DOI: 10.1038/s41413-020-00128-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
26 Feng S, De Carvalho DD. Clinical advances in targeting epigenetics for cancer therapy. FEBS J. [DOI: 10.1111/febs.15750] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
27 Venkatesh T, Thankachan S, Kabekkodu SP, Chakraborti S, Suresh PS. Emerging patterns and implications of breast cancer epigenetics. Epigenetics and Reproductive Health 2021. [DOI: 10.1016/b978-0-12-819753-0.00015-5] [Reference Citation Analysis]
28 Roy S, Kundu TK. Chemical biology: Drug discovery targeting the functional genome. Chemical Biology of the Genome 2021. [DOI: 10.1016/b978-0-12-817644-3.00009-x] [Reference Citation Analysis]
29 Zhang S, Gong Y, Li C, Yang W, Li L. Beyond regulations at DNA levels: A review of epigenetic therapeutics targeting cancer stem cells. Cell Prolif 2021;54:e12963. [PMID: 33314500 DOI: 10.1111/cpr.12963] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
30 Mondal P, Natesh J, Penta D, Meeran SM. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: A clinical update. Semin Cancer Biol 2020:S1044-579X(20)30266-2. [PMID: 33309850 DOI: 10.1016/j.semcancer.2020.12.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
31 Perrone MG, Luisi O, De Grassi A, Ferorelli S, Cormio G, Scilimati A. Translational Theragnosis of Ovarian Cancer: where do we stand? Curr Med Chem 2020;27:5675-715. [PMID: 31419925 DOI: 10.2174/0929867326666190816232330] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
32 Kozakova K, Mego M, Cheng L, Chovanec M. Promising novel therapies for relapsed and refractory testicular germ cell tumors. Expert Rev Anticancer Ther 2021;21:53-69. [PMID: 33138660 DOI: 10.1080/14737140.2021.1838279] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
33 Pacini G, Paolino S, Andreoli L, Tincani A, Gerosa M, Caporali R, Iagnocco A, Ospelt C, Smith V, Cutolo M. Epigenetics, pregnancy and autoimmune rheumatic diseases. Autoimmun Rev 2020;19:102685. [PMID: 33115633 DOI: 10.1016/j.autrev.2020.102685] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
34 Arif KMT, Elliott EK, Haupt LM, Griffiths LR. Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets. Cancers (Basel) 2020;12:E2922. [PMID: 33050637 DOI: 10.3390/cancers12102922] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 20.5] [Reference Citation Analysis]
35 Darvishi E, Slemmons K, Wan Z, Mitra S, Hou X, Hugues Parmentier J, Eddie Loh YH, Helman LJ. Molecular mechanisms of Guadecitabine induced FGFR4 down regulation in alveolar rhabdomyosarcomas. Neoplasia 2020;22:274-82. [PMID: 32464274 DOI: 10.1016/j.neo.2020.05.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Rajić J, Dinić S, Uskoković A, Arambašić Jovanović J, Tolić A, Đorđević M, Đorđević M, Poznanović G, Mihailović M, Inic-Kanada A, Barisani-Asenbauer T, Grdović N, Vidaković M. DNA methylation of miR-200 clusters promotes epithelial to mesenchymal transition in human conjunctival epithelial cells. Exp Eye Res 2020;197:108047. [PMID: 32387379 DOI: 10.1016/j.exer.2020.108047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 Baeken MW, Moosmann B, Hajieva P. Retrotransposon activation by distressed mitochondria in neurons. Biochemical and Biophysical Research Communications 2020;525:570-5. [DOI: 10.1016/j.bbrc.2020.02.106] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
38 Wu C, Guo E, Ming J, Sun W, Nie X, Sun L, Peng S, Luo M, Liu D, Zhang L, Mei Q, Long G, Hu G, Hu G. Radiation-Induced DNMT3B Promotes Radioresistance in Nasopharyngeal Carcinoma through Methylation of p53 and p21. Mol Ther Oncolytics 2020;17:306-19. [PMID: 32382655 DOI: 10.1016/j.omto.2020.04.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
39 Cao J, Yan Q. Cancer Epigenetics, Tumor Immunity, and Immunotherapy. Trends Cancer 2020;6:580-92. [PMID: 32610068 DOI: 10.1016/j.trecan.2020.02.003] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 39.0] [Reference Citation Analysis]
40 Belizário J, Destro Rodrigues MF. Checkpoint inhibitor blockade and epigenetic reprogrammability in CD8+ T-cell activation and exhaustion. Ther Adv Vaccines Immunother 2020;8:2515135520904238. [PMID: 32206744 DOI: 10.1177/2515135520904238] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Belitskiy GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Drug-Related Carcinogenesis: Risk Factors and Approaches for Its Prevention. Biochemistry (Mosc) 2020;85:S79-S107. [PMID: 32087055 DOI: 10.1134/S0006297920140059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
42 Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer 2020;2:zcaa002. [PMID: 34316682 DOI: 10.1093/narcan/zcaa002] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 39.0] [Reference Citation Analysis]
43 García-Gutiérrez L, McKenna S, Kolch W, Matallanas D. RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers (Basel) 2020;12:E229. [PMID: 31963420 DOI: 10.3390/cancers12010229] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
44 Rajashekaraiah R, Kumar PR, Prakash N, Rao GS, Devi VR, Metta M, Narayanaswamy HD, Swamy MN, Satyanarayan K, Rao S, Rathnamma D, Sahadev A, Sunilchandra U, Santhosh CR, Dhanalakshmi H, Kumar SN, Ruban SW, Kalmath GP, Gomes AR, Kumar KRA, Govindappa PK. Anticancer efficacy of 6-thioguanine loaded chitosan nanoparticles with or without curcumin. Int J Biol Macromol 2020;148:704-14. [PMID: 31954127 DOI: 10.1016/j.ijbiomac.2020.01.117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
45 Kim MH, Kino-Oka M. Bioengineering Considerations for a Nurturing Way to Enhance Scalable Expansion of Human Pluripotent Stem Cells. Biotechnol J 2020;15:e1900314. [PMID: 31904180 DOI: 10.1002/biot.201900314] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
46 Pastuch-Gawołek G, Gillner D, Król E, Walczak K, Wandzik I. Selected nucleos(t)ide-based prescribed drugs and their multi-target activity. Eur J Pharmacol 2019;865:172747. [PMID: 31634460 DOI: 10.1016/j.ejphar.2019.172747] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
47 Ribeiro ML, Reyes-Garau D, Armengol M, Fernández-Serrano M, Roué G. Recent Advances in the Targeting of Epigenetic Regulators in B-Cell Non-Hodgkin Lymphoma. Front Genet 2019;10:986. [PMID: 31681423 DOI: 10.3389/fgene.2019.00986] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
48 Wingelhofer B, Somervaille TCP. Emerging Epigenetic Therapeutic Targets in Acute Myeloid Leukemia. Front Oncol 2019;9:850. [PMID: 31552175 DOI: 10.3389/fonc.2019.00850] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
49 Kaliman P. Epigenetics and meditation. Current Opinion in Psychology 2019;28:76-80. [DOI: 10.1016/j.copsyc.2018.11.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
50 Wenta T, Rychlowski M, Jurewicz E, Jarzab M, Zurawa-Janicka D, Filipek A, Lipinska B. The HtrA3 protease promotes drug-induced death of lung cancer cells by cleavage of the X-linked inhibitor of apoptosis protein (XIAP). FEBS J 2019;286:4579-96. [PMID: 31260151 DOI: 10.1111/febs.14977] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
51 Cai WY, Lin LY, Wang L, Yang L, Ye GD, Zeng Q, Cheng J, Xie YY, Chen ML, Luo QC. Inhibition of Bcl6b promotes gastric cancer by amplifying inflammation in mice. Cell Commun Signal 2019;17:72. [PMID: 31288844 DOI: 10.1186/s12964-019-0387-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
52 Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol. 2019;20:573-589. [PMID: 31270442 DOI: 10.1038/s41580-019-0143-1] [Cited by in Crossref: 217] [Cited by in F6Publishing: 228] [Article Influence: 72.3] [Reference Citation Analysis]
53 Humphries B, Wang Z, Yang C. MicroRNA Regulation of Epigenetic Modifiers in Breast Cancer. Cancers (Basel) 2019;11:E897. [PMID: 31252590 DOI: 10.3390/cancers11070897] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
54 Lamprianidou E, Zoulia E, Bernard E, Kordella C, Papoutselis M, Bezirgiannidou Z, Vrachiolias G, Papaemmanuil E, Kotsianidis I. Multifaceted modes of action of azacytidine: a riddle wrapped up in an enigma. Leuk Lymphoma 2019;60:3277-81. [PMID: 31185765 DOI: 10.1080/10428194.2019.1627542] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
55 Anvar Z, Acurzio B, Roma J, Cerrato F, Verde G. Origins of DNA methylation defects in Wilms tumors. Cancer Lett 2019;457:119-28. [PMID: 31103718 DOI: 10.1016/j.canlet.2019.05.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
56 Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics 2019;11:81. [PMID: 31097014 DOI: 10.1186/s13148-019-0675-4] [Cited by in Crossref: 92] [Cited by in F6Publishing: 95] [Article Influence: 30.7] [Reference Citation Analysis]
57 Usher KM, Zhu S, Mavropalias G, Carrino JA, Zhao J, Xu J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res 2019;7:9. [PMID: 30937213 DOI: 10.1038/s41413-019-0047-x] [Cited by in Crossref: 68] [Cited by in F6Publishing: 72] [Article Influence: 22.7] [Reference Citation Analysis]
58 Vafadar A, Mokaram P, Erfani M, Yousefi Z, Farhadi A, Elham Shirazi T, Tamaddon G. The effect of decitabine on the expression and methylation of the PPP1CA, BTG2, and PTEN in association with changes in miR-125b, miR-17, and miR-181b in NALM6 cell line. J Cell Biochem 2019;120:13156-67. [PMID: 30912184 DOI: 10.1002/jcb.28590] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
59 Mohammad HP, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med. 2019;25:403-418. [PMID: 30842676 DOI: 10.1038/s41591-019-0376-8] [Cited by in Crossref: 199] [Cited by in F6Publishing: 205] [Article Influence: 66.3] [Reference Citation Analysis]
60 Nicorescu I, Dallinga GM, de Winther MP, Stroes ES, Bahjat M. Potential epigenetic therapeutics for atherosclerosis treatment. Atherosclerosis 2019;281:189-97. [DOI: 10.1016/j.atherosclerosis.2018.10.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 10.0] [Reference Citation Analysis]
61 Zhou S, Yan Y, Chen X, Wang X, Zeng S, Qian L, Wei J, Yang X, Zhou Y, Gong Z, Xu Z. Roles of highly expressed PAICS in lung adenocarcinoma. Gene 2019;692:1-8. [PMID: 30641222 DOI: 10.1016/j.gene.2018.12.064] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
62 Belle R, Kawamura A, Arimondo PB. Chemical Compounds Targeting DNA Methylation and Hydroxymethylation. Topics in Medicinal Chemistry 2019. [DOI: 10.1007/7355_2019_76] [Reference Citation Analysis]
63 Pasyukova EG, Symonenko AV, Rybina OY. Epigenetic Drugs. Reference Module in Biomedical Sciences 2019. [DOI: 10.1016/b978-0-12-801238-3.11298-x] [Reference Citation Analysis]
64 Zahnow CA. The epigenomic impact of methylation in metabolic dysfunction and cancer. Nutritional Epigenomics 2019. [DOI: 10.1016/b978-0-12-816843-1.00005-9] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
65 Ren XY, Wen X, Li YQ, Zhang J, He QM, Yang XJ, Tang XR, Wang YQ, Zhang PP, Chen XZ, Cheng B, Ma J, Liu N. TIPE3 hypermethylation correlates with worse prognosis and promotes tumor progression in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2018;37:227. [PMID: 30217224 DOI: 10.1186/s13046-018-0881-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
66 Baba Y, Karube I, Yoshida W. Global DNA Methylation Level Monitoring by methyl-CpG Binding Domain-Fused Luciferase. Analytical Letters 2018;52:754-60. [DOI: 10.1080/00032719.2018.1494739] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
67 Agrawal K, Das V, Táborská N, Gurský J, Džubák P, Hajdúch M. Differential Regulation of Methylation-Regulating Enzymes by Senescent Stromal Cells Drives Colorectal Cancer Cell Response to DNA-Demethylating Epi-Drugs. Stem Cells Int 2018;2018:6013728. [PMID: 30158986 DOI: 10.1155/2018/6013728] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]