BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang H, Guo R, Du Z, Bai L, Li L, Cui J, Li W, Hoffman AR, Hu JF. Epigenetic Targeting of Granulin in Hepatoma Cells by Synthetic CRISPR dCas9 Epi-suppressors. Mol Ther Nucleic Acids. 2018;11:23-33. [PMID: 29858058 DOI: 10.1016/j.omtn.2018.01.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Fujita T, Fujii H. New Directions for Epigenetics: Application of Engineered DNA-binding Molecules to Locus-specific Epigenetic Research. Handbook of Epigenetics 2023. [DOI: 10.1016/b978-0-323-91909-8.00020-7] [Reference Citation Analysis]
2 Li Q, Gao Y, Wang H. CRISPR-Based Tools for Fighting Rare Diseases. Life 2022;12:1968. [DOI: 10.3390/life12121968] [Reference Citation Analysis]
3 Chavez M, Chen X, Finn PB, Qi LS. Advances in CRISPR therapeutics. Nat Rev Nephrol 2022. [PMID: 36280707 DOI: 10.1038/s41581-022-00636-2] [Reference Citation Analysis]
4 Perera BPU, Morgan RK, Polemi KM, Sala-Hamrick KE, Svoboda LK, Dolinoy DC. PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Curr Environ Health Rep 2022. [PMID: 35917009 DOI: 10.1007/s40572-022-00372-6] [Reference Citation Analysis]
5 Swain T, Pflueger C, Freytag S, Poppe D, Pflueger J, Nguyen T, Li JK, Lister R. A modular dCas9-based recruitment platform for combinatorial epigenome editing.. [DOI: 10.1101/2022.07.01.498378] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Kanafi MM, Tavallaei M. Overview of advances in CRISPR/deadCas9 technology and its applications in human diseases. Gene 2022;830:146518. [PMID: 35447246 DOI: 10.1016/j.gene.2022.146518] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Azlan A, Rajasegaran Y, Kang Zi K, Rosli AA, Yik MY, Yusoff NM, Heidenreich O, Moses EJ. Elucidating miRNA Function in Cancer Biology via the Molecular Genetics’ Toolbox. Biomedicines 2022;10:915. [DOI: 10.3390/biomedicines10040915] [Reference Citation Analysis]
8 Lan T, Que H, Luo M, Zhao X, Wei X. Genome editing via non-viral delivery platforms: current progress in personalized cancer therapy. Mol Cancer 2022;21:71. [PMID: 35277177 DOI: 10.1186/s12943-022-01550-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, Gohil J, Chu DT, Vu-Thi H, Alzahrani KJ, Show PL, Rawal RM, Ramakrishna S, Singh V. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022:S0168-3659(22)00080-3. [PMID: 35149141 DOI: 10.1016/j.jconrel.2022.02.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
10 Zhang Z, Wang P, Liu J. Development and Vision of CRISPR-Based Technology. CRISPR 2022. [DOI: 10.1007/978-981-16-8504-0_1] [Reference Citation Analysis]
11 Kong H, Ju E, Yi K, Xu W, Lao YH, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. Adv Sci (Weinh) 2021;8:e2102051. [PMID: 34665528 DOI: 10.1002/advs.202102051] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
12 Du Z, Wen X, Wang Y, Jia L, Zhang S, Liu Y, Zhou L, Li H, Yang W, Wang C, Chen J, Hao Y, Salgado Figueroa D, Chen H, Li D, Chen N, Celik I, Zhu Y, Yan Z, Fu C, Liu S, Jiao B, Wang Z, Zhang H, Gülsoy G, Luo J, Qin B, Gao S, Kapranov P, Esteban MA, Zhang S, Li W, Ay F, Chen R, Hoffman AR, Cui J, Hu JF. Chromatin lncRNA Platr10 controls stem cell pluripotency by coordinating an intrachromosomal regulatory network. Genome Biol 2021;22:233. [PMID: 34412677 DOI: 10.1186/s13059-021-02444-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
13 Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021;14:765. [PMID: 34451862 DOI: 10.3390/ph14080765] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Fernandez A, O'Leary C, O'Byrne KJ, Burgess J, Richard DJ, Suraweera A. Epigenetic Mechanisms in DNA Double Strand Break Repair: A Clinical Review. Front Mol Biosci 2021;8:685440. [PMID: 34307454 DOI: 10.3389/fmolb.2021.685440] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Rieder M, Duerschmied D, Bode C, Lother A. Reply to Panda et al. J Infect Dis 2021;224:367-8. [PMID: 33955472 DOI: 10.1093/infdis/jiab238] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Alves E, Taifour S, Dolcetti R, Chee J, Nowak AK, Gaudieri S, Blancafort P. Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Mol Ther Methods Clin Dev 2021;21:592-606. [PMID: 34095343 DOI: 10.1016/j.omtm.2021.04.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Policarpi C, Dabin J, Hackett JA. Epigenetic editing: Dissecting chromatin function in context. Bioessays 2021;43:e2000316. [PMID: 33724509 DOI: 10.1002/bies.202000316] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
18 Martinez-Escobar A, Luna-Callejas B, Ramón-Gallegos E. CRISPR-dCas9-Based Artificial Transcription Factors to Improve Efficacy of Cancer Treatment With Drug Repurposing: Proposal for Future Research. Front Oncol 2020;10:604948. [PMID: 33614489 DOI: 10.3389/fonc.2020.604948] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Majchrzak-Celińska A, Warych A, Szoszkiewicz M. Novel Approaches to Epigenetic Therapies: From Drug Combinations to Epigenetic Editing. Genes (Basel) 2021;12:208. [PMID: 33572577 DOI: 10.3390/genes12020208] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
20 Kazi TA, Biswas SR. CRISPR/dCas system as the modulator of gene expression. Prog Mol Biol Transl Sci 2021;178:99-122. [PMID: 33685602 DOI: 10.1016/bs.pmbts.2020.12.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
21 Sgro A, Blancafort P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res. 2020;48:12453-12482. [PMID: 33196851 DOI: 10.1093/nar/gkaa1000] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
22 Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol. 2021;23:11-22. [PMID: 33420494 DOI: 10.1038/s41556-020-00620-7] [Cited by in Crossref: 81] [Cited by in F6Publishing: 89] [Article Influence: 81.0] [Reference Citation Analysis]
23 Ansari I, Chaturvedi A, Chitkara D, Singh S. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol 2021:S1044-579X(20)30278-9. [PMID: 33421620 DOI: 10.1016/j.semcancer.2020.12.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Wang J, Yang J, Li D, Li J. Technologies for targeting DNA methylation modifications: Basic mechanism and potential application in cancer. Biochim Biophys Acta Rev Cancer 2021;1875:188454. [PMID: 33075468 DOI: 10.1016/j.bbcan.2020.188454] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
25 Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, Kiani J. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front Immunol 2020;11:2062. [PMID: 33117331 DOI: 10.3389/fimmu.2020.02062] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
26 Breunig CT, Köferle A, Neuner AM, Wiesbeck MF, Baumann V, Stricker SH. CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiol Rev 2021;101:177-211. [PMID: 32525760 DOI: 10.1152/physrev.00034.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
27 Rahman MM, Tollefsbol TO. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects. Methods 2021;187:77-91. [PMID: 32315755 DOI: 10.1016/j.ymeth.2020.04.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
28 Qu J, Wang W, Feng Y, Niu L, Li M, Yang J, Xie Y. Cationic Antheraea pernyi Silk Fibroin-Modified Adenovirus-Mediated ING4 and IL-24 Dual Gene Coexpression Vector Suppresses the Growth of Hepatoma Carcinoma Cells. Int J Nanomedicine 2019;14:9745-61. [PMID: 31849466 DOI: 10.2147/IJN.S230693] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
29 Brezgin S, Kostyusheva A, Kostyushev D, Chulanov V. Dead Cas Systems: Types, Principles, and Applications. Int J Mol Sci 2019;20:E6041. [PMID: 31801211 DOI: 10.3390/ijms20236041] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
30 Valenti MT, Serena M, Carbonare LD, Zipeto D. CRISPR/Cas system: An emerging technology in stem cell research. World J Stem Cells 2019; 11(11): 937-956 [PMID: 31768221 DOI: 10.4252/wjsc.v11.i11.937] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
31 Xu SJ, Heller EA. Recent advances in neuroepigenetic editing. Curr Opin Neurobiol 2019;59:26-33. [PMID: 31015104 DOI: 10.1016/j.conb.2019.03.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
32 Zhang S, Chen H, Wang J. Generate TALE/TALEN as Easily and Rapidly as Generating CRISPR. Mol Ther Methods Clin Dev 2019;13:310-20. [PMID: 30923728 DOI: 10.1016/j.omtm.2019.02.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
33 Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, Jia L, Zhou L, Li W, Hoffman AR, Hu JF, Cui J. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol 2018;19:218. [PMID: 30537986 DOI: 10.1186/s13059-018-1594-y] [Cited by in Crossref: 182] [Cited by in F6Publishing: 203] [Article Influence: 45.5] [Reference Citation Analysis]
34 Pian L, Wen X, Kang L, Li Z, Nie Y, Du Z, Yu D, Zhou L, Jia L, Chen N, Li D, Zhang S, Li W, Hoffman AR, Sun J, Cui J, Hu JF. Targeting the IGF1R Pathway in Breast Cancer Using Antisense lncRNA-Mediated Promoter cis Competition. Mol Ther Nucleic Acids 2018;12:105-17. [PMID: 30195750 DOI: 10.1016/j.omtn.2018.04.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]