BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Occelli F, Hasselmann F, Bourien J, Eybalin M, Puel J, Desvignes N, Wiszniowski B, Edeline J, Gourévitch B. Age-related Changes in Auditory Cortex Without Detectable Peripheral Alterations: A Multi-level Study in Sprague–Dawley Rats. Neuroscience 2019;404:184-204. [DOI: 10.1016/j.neuroscience.2019.02.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Bishop R, Qureshi F, Yan J. Age-related changes in neuronal receptive fields of primary auditory cortex in frequency, amplitude, and temporal domains. Hearing Research 2022. [DOI: 10.1016/j.heares.2022.108504] [Reference Citation Analysis]
2 Land R, Kral A. Temporal acuity is preserved in the auditory midbrain of aged mice. Neurobiol Aging 2021;110:47-60. [PMID: 34852306 DOI: 10.1016/j.neurobiolaging.2021.10.009] [Reference Citation Analysis]
3 Occelli F, Hasselmann F, Bourien J, Puel JL, Desvignes N, Wiszniowski B, Edeline JM, Gourévitch B. Temporal Alterations to Central Auditory Processing without Synaptopathy after Lifetime Exposure to Environmental Noise. Cereb Cortex 2021:bhab310. [PMID: 34494109 DOI: 10.1093/cercor/bhab310] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Bureš Z, Pysanenko K, Syka J. Age-related changes in the temporal processing of acoustical signals in the auditory cortex of rats. Hear Res 2021;402:108025. [PMID: 32709399 DOI: 10.1016/j.heares.2020.108025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Liu S, Yang Y, Mao X, Deng L, Shuai C, Yao Y, Shi Y, Yin Z. Improving glucose metabolism in the auditory cortex delays the aging of auditory function of guinea pig. Mech Ageing Dev 2020;190:111292. [PMID: 32592712 DOI: 10.1016/j.mad.2020.111292] [Reference Citation Analysis]
6 Cisneros-franco JM, Thomas ME, Regragui I, Lane CP, Ouellet L, de Villers-sidani É. Regulation of perceptual learning by chronic chemogenetic manipulation of parvalbumin-positive interneurons.. [DOI: 10.1101/2020.01.13.905257] [Reference Citation Analysis]
7 Maclaine KD, Llano DA. The Aging Central Auditory System. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24174-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Quraishe S, Newman T, Anderson L. Auditory temporal acuity improves with age in the male mouse auditory thalamus: A role for perineuronal nets? J Neurosci Res 2020;98:1780-99. [PMID: 31562661 DOI: 10.1002/jnr.24537] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
9 Kommajosyula SP, Cai R, Bartlett E, Caspary DM. Top-down or bottom up: decreased stimulus salience increases responses to predictable stimuli of auditory thalamic neurons. J Physiol 2019;597:2767-84. [PMID: 30924931 DOI: 10.1113/JP277450] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]