BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dobkin BH, Firestine A, West M, Saremi K, Woods R. Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. Neuroimage 2004;23:370-81. [PMID: 15325385 DOI: 10.1016/j.neuroimage.2004.06.008] [Cited by in Crossref: 219] [Cited by in F6Publishing: 185] [Article Influence: 12.2] [Reference Citation Analysis]
Number Citing Articles
1 Johansen-Berg H. Functional imaging of stroke recovery: what have we learnt and where do we go from here? Int J Stroke 2007;2:7-16. [PMID: 18705982 DOI: 10.1111/j.1747-4949.2007.00093.x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 2.3] [Reference Citation Analysis]
2 Labriffe M, Annweiler C, Amirova LE, Gauquelin-Koch G, Ter Minassian A, Leiber LM, Beauchet O, Custaud MA, Dinomais M. Brain Activity during Mental Imagery of Gait Versus Gait-Like Plantar Stimulation: A Novel Combined Functional MRI Paradigm to Better Understand Cerebral Gait Control. Front Hum Neurosci 2017;11:106. [PMID: 28321186 DOI: 10.3389/fnhum.2017.00106] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
3 Sacheli LM, Zapparoli L, Preti M, De Santis C, Pelosi C, Ursino N, Zerbi A, Stucovitz E, Banfi G, Paulesu E. A functional limitation to the lower limbs affects the neural bases of motor imagery of gait. Neuroimage Clin 2018;20:177-87. [PMID: 30094167 DOI: 10.1016/j.nicl.2018.07.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
4 Barthélemy D, Grey MJ, Nielsen JB, Bouyer L. Involvement of the corticospinal tract in the control of human gait. Prog Brain Res 2011;192:181-97. [PMID: 21763526 DOI: 10.1016/B978-0-444-53355-5.00012-9] [Cited by in Crossref: 52] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
5 Koenraadt KL, Duysens J, Rijken H, van Nes IJ, Keijsers NL. Preserved foot motor cortex in patients with complete spinal cord injury: a functional near-infrared spectroscopic study. Neurorehabil Neural Repair 2014;28:179-87. [PMID: 24213959 DOI: 10.1177/1545968313508469] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
6 Klarner T, Zehr EP. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J Neurophysiol 2018;120:53-77. [PMID: 29537920 DOI: 10.1152/jn.00554.2017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
7 Kim JK, Choo YJ, Shin H, Choi GS, Chang MC. Prediction of ambulatory outcome in patients with corona radiata infarction using deep learning. Sci Rep 2021;11:7989. [PMID: 33846472 DOI: 10.1038/s41598-021-87176-0] [Reference Citation Analysis]
8 Koenraadt KL, Roelofsen EG, Duysens J, Keijsers NL. Cortical control of normal gait and precision stepping: An fNIRS study. NeuroImage 2014;85:415-22. [DOI: 10.1016/j.neuroimage.2013.04.070] [Cited by in Crossref: 115] [Cited by in F6Publishing: 105] [Article Influence: 14.4] [Reference Citation Analysis]
9 Jaeger L, Marchal-Crespo L, Wolf P, Riener R, Michels L, Kollias S. Brain activation associated with active and passive lower limb stepping. Front Hum Neurosci 2014;8:828. [PMID: 25389396 DOI: 10.3389/fnhum.2014.00828] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 4.6] [Reference Citation Analysis]
10 Bowden MG, Behrman AL, Woodbury M, Gregory CM, Velozo CA, Kautz SA. Advancing measurement of locomotor rehabilitation outcomes to optimize interventions and differentiate between recovery versus compensation. J Neurol Phys Ther 2012;36:38-44. [PMID: 22333921 DOI: 10.1097/NPT.0b013e3182472cf6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
11 Koski L, Dobkin BH. Standardizing and validating transcranial magnetic stimulation measures for use in stroke rehabilitation research. Clinical Neurophysiology 2005;116:740-1. [DOI: 10.1016/j.clinph.2004.09.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
12 Bruijn SM, Van Dieën JH, Daffertshofer A. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking. Front Hum Neurosci 2015;9:593. [PMID: 26578937 DOI: 10.3389/fnhum.2015.00593] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 6.1] [Reference Citation Analysis]
13 Jones PS, Pomeroy VM, Wang J, Schlaug G, Tulasi Marrapu S, Geva S, Rowe PJ, Chandler E, Kerr A, Baron JC; SWIFT-Cast investigators. Does stroke location predict walk speed response to gait rehabilitation? Hum Brain Mapp 2016;37:689-703. [PMID: 26621010 DOI: 10.1002/hbm.23059] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 5.4] [Reference Citation Analysis]
14 Iseki K, Fukuyama H, Oishi N, Tomimoto H, Otsuka Y, Nankaku M, Benninger D, Hallett M, Hanakawa T. Freezing of gait and white matter changes: a tract-based spatial statistics study. J Clin Mov Disord 2015;2:1. [PMID: 26788337 DOI: 10.1186/s40734-014-0011-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
15 Forrester LW, Roy A, Krywonis A, Kehs G, Krebs HI, Macko RF. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study. Neurorehabil Neural Repair 2014;28:678-87. [PMID: 24515923 DOI: 10.1177/1545968314521004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
16 Cleland BT, Schindler-Ivens S. Brain Activation During Passive and Volitional Pedaling After Stroke. Motor Control 2019;23:52-80. [PMID: 30012052 DOI: 10.1123/mc.2017-0059] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Mizuno T, Aramaki Y. Cathodal transcranial direct current stimulation over the Cz increases joint flexibility. Neuroscience Research 2017;114:55-61. [DOI: 10.1016/j.neures.2016.08.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
18 Spedden ME, Beck MM, Christensen MS, Dietz MJ, Karabanov AN, Geertsen SS, Nielsen JB, Lundbye-jensen J. Directed connectivity between primary and premotor areas underlying ankle force control in young and older adults. NeuroImage 2020;218:116982. [DOI: 10.1016/j.neuroimage.2020.116982] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Castermans T, Duvinage M, Cheron G, Dutoit T. About the cortical origin of the low-delta and high-gamma rhythms observed in EEG signals during treadmill walking. Neuroscience Letters 2014;561:166-70. [DOI: 10.1016/j.neulet.2013.12.059] [Cited by in Crossref: 95] [Cited by in F6Publishing: 78] [Article Influence: 11.9] [Reference Citation Analysis]
20 Mankodi A, Azzabou N, Bulea T, Reyngoudt H, Shimellis H, Ren Y, Kim E, Fischbeck KH, Carlier PG. Skeletal muscle water T2 as a biomarker of disease status and exercise effects in patients with Duchenne muscular dystrophy. Neuromuscul Disord 2017;27:705-14. [PMID: 28601553 DOI: 10.1016/j.nmd.2017.04.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
21 Ellaway P, Kuppuswamy A, Balasubramaniam A, Maksimovic R, Gall A, Craggs M, Mathias C, Bacon M, Prochazka A, Kowalczewski J, Conway B, Galen S, Catton C, Allan D, Curt A, Wirth B, van Hedel H. Development of quantitative and sensitive assessments of physiological and functional outcome during recovery from spinal cord injury: A Clinical Initiative. Brain Research Bulletin 2011;84:343-57. [DOI: 10.1016/j.brainresbull.2010.08.007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.2] [Reference Citation Analysis]
22 Gandolla M, Ferrante S, Molteni F, Guanziroli E, Frattini T, Martegani A, Ferrigno G, Friston K, Pedrocchi A, Ward NS. Re-thinking the role of motor cortex: context-sensitive motor outputs? Neuroimage 2014;91:366-74. [PMID: 24440530 DOI: 10.1016/j.neuroimage.2014.01.011] [Cited by in Crossref: 64] [Cited by in F6Publishing: 45] [Article Influence: 8.0] [Reference Citation Analysis]
23 Sacco K, Cauda F, Cerliani L, Mate D, Duca S, Geminiani G. Motor imagery of walking following training in locomotor attention. The effect of ‘the tango lesson’. NeuroImage 2006;32:1441-9. [DOI: 10.1016/j.neuroimage.2006.05.018] [Cited by in Crossref: 84] [Cited by in F6Publishing: 75] [Article Influence: 5.3] [Reference Citation Analysis]
24 Hanakawa T. Neuroimaging of standing and walking: Special emphasis on Parkinsonian gait. Parkinsonism & Related Disorders 2006;12:S70-5. [DOI: 10.1016/j.parkreldis.2006.05.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
25 Wong YM. Commentary: Differential Cerebral Response to Somatosensory Stimulation of an Acupuncture Point vs. Two Non-Acupuncture Points Measured with EEG and fMRI. Front Hum Neurosci 2016;10:63. [PMID: 26924978 DOI: 10.3389/fnhum.2016.00063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
26 Giesser B, Beres-jones J, Budovitch A, Herlihy E, Harkema S. Locomotor training using body weight support on a treadmill improves mobility in persons with multiple sclerosis: a pilot study. Mult Scler 2007;13:224-31. [DOI: 10.1177/1352458506070663] [Cited by in Crossref: 66] [Cited by in F6Publishing: 53] [Article Influence: 13.2] [Reference Citation Analysis]
27 Bayón M, Martínez J. Plasticidad cerebral inducida por algunas terapias aplicadas en el paciente con ictus. Rehabilitación 2008;42:86-91. [DOI: 10.1016/s0048-7120(08)73619-3] [Cited by in Crossref: 7] [Article Influence: 0.5] [Reference Citation Analysis]
28 Dobkin BH. Confounders in rehabilitation trials of task-oriented training: lessons from the designs of the EXCITE and SCILT multicenter trials. Neurorehabil Neural Repair 2007;21:3-13. [PMID: 17172549 DOI: 10.1177/1545968306297329] [Cited by in Crossref: 100] [Cited by in F6Publishing: 87] [Article Influence: 6.7] [Reference Citation Analysis]
29 Saunders E, Clark BC, Clark LA, Grooms DR. Development of a trunk motor paradigm for use in neuroimaging. Transl Neurosci 2020;11:193-200. [PMID: 33335758 DOI: 10.1515/tnsci-2020-0116] [Reference Citation Analysis]
30 Allen NE, Moloney N, van Vliet V, Canning CG. The Rationale for Exercise in the Management of Pain in Parkinson's Disease. J Parkinsons Dis 2015;5:229-39. [PMID: 25649828 DOI: 10.3233/JPD-140508] [Cited by in Crossref: 32] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
31 Del Din S, Bertoldo A, Sawacha Z, Jonsdottir J, Rabuffetti M, Cobelli C, Ferrarin M. Assessment of biofeedback rehabilitation in post-stroke patients combining fMRI and gait analysis: a case study. J Neuroeng Rehabil 2014;11:53. [PMID: 24716475 DOI: 10.1186/1743-0003-11-53] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
32 Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. Neuroimage 2012;63:1203-11. [PMID: 22906791 DOI: 10.1016/j.neuroimage.2012.08.019] [Cited by in Crossref: 170] [Cited by in F6Publishing: 134] [Article Influence: 17.0] [Reference Citation Analysis]
33 Dobkin BH. Rehabilitation and functional neuroimaging dose-response trajectories for clinical trials. Neurorehabil Neural Repair 2005;19:276-82. [PMID: 16263960 DOI: 10.1177/1545968305281892] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 2.4] [Reference Citation Analysis]
34 Petzinger GM, Fisher BE, Van Leeuwen JE, Vukovic M, Akopian G, Meshul CK, Holschneider DP, Nacca A, Walsh JP, Jakowec MW. Enhancing neuroplasticity in the basal ganglia: the role of exercise in Parkinson's disease. Mov Disord 2010;25 Suppl 1:S141-5. [PMID: 20187247 DOI: 10.1002/mds.22782] [Cited by in Crossref: 129] [Cited by in F6Publishing: 110] [Article Influence: 10.8] [Reference Citation Analysis]
35 Lin K, Chung H, Wu C, Liu H, Hsieh Y, Chen I, Chen C, Chuang L, Liu J, Wai Y. Constraint-Induced Therapy Versus Control Intervention in Patients with Stroke: A Functional Magnetic Resonance Imaging Study. American Journal of Physical Medicine & Rehabilitation 2010;89:177-85. [DOI: 10.1097/phm.0b013e3181cf1c78] [Cited by in Crossref: 37] [Cited by in F6Publishing: 11] [Article Influence: 3.1] [Reference Citation Analysis]
36 Dobkin BH, Duncan PW. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair 2012;26:308-17. [PMID: 22412172 DOI: 10.1177/1545968312439687] [Cited by in Crossref: 146] [Cited by in F6Publishing: 114] [Article Influence: 14.6] [Reference Citation Analysis]
37 Ng SS, Hui-Chan CW. Transcutaneous electrical stimulation on acupoints combined with task-related training to improve motor function and walking performance in an individual 7 years poststroke: a case study. J Neurol Phys Ther 2010;34:208-13. [PMID: 21084922 DOI: 10.1097/NPT.0b013e3181fe0ab0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
38 Dobkin BH. Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J Physiol 2007;579:637-42. [PMID: 17095557 DOI: 10.1113/jphysiol.2006.123067] [Cited by in Crossref: 145] [Cited by in F6Publishing: 98] [Article Influence: 9.1] [Reference Citation Analysis]
39 Lam T, Luttmann K, Houldin A, Chan C. Treadmill-based locomotor training with leg weights to enhance functional ambulation in people with chronic stroke: a pilot study. J Neurol Phys Ther 2009;33:129-35. [PMID: 19809391 DOI: 10.1097/NPT.0b013e3181b57de5] [Cited by in Crossref: 35] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
40 Trinastic JP, Kautz SA, McGregor K, Gregory C, Bowden M, Benjamin MB, Kurtzman M, Chang YL, Conway T, Crosson B. An fMRI study of the differences in brain activity during active ankle dorsiflexion and plantarflexion. Brain Imaging Behav 2010;4:121-31. [PMID: 20502995 DOI: 10.1007/s11682-010-9091-2] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
41 Bao SC, Leung WC, K Cheung VC, Zhou P, Tong KY. Pathway-specific modulatory effects of neuromuscular electrical stimulation during pedaling in chronic stroke survivors. J Neuroeng Rehabil 2019;16:143. [PMID: 31744520 DOI: 10.1186/s12984-019-0614-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
42 Kurz MJ, Wilson TW, Arpin DJ. Stride-time variability and sensorimotor cortical activation during walking. NeuroImage 2012;59:1602-7. [DOI: 10.1016/j.neuroimage.2011.08.084] [Cited by in Crossref: 98] [Cited by in F6Publishing: 86] [Article Influence: 9.8] [Reference Citation Analysis]
43 Khallaf ME, Gabr AM, Fayed EE. Effect of Task Specific Exercises, Gait Training, and Visual Biofeedback on Equinovarus Gait among Individuals with Stroke: Randomized Controlled Study. Neurol Res Int 2014;2014:693048. [PMID: 25538853 DOI: 10.1155/2014/693048] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
44 Kapreli E, Athanasopoulos S, Papathanasiou M, Van Hecke P, Kelekis D, Peeters R, Strimpakos N, Sunaert S. Lower Limb Sensorimotor Network: Issues of Somatotopy and Overlap. Cortex 2007;43:219-32. [DOI: 10.1016/s0010-9452(08)70477-5] [Cited by in Crossref: 61] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
45 Luft AR, Macko RF, Forrester LW, Villagra F, Ivey F, Sorkin JD, Whitall J, McCombe-Waller S, Katzel L, Goldberg AP, Hanley DF. Treadmill exercise activates subcortical neural networks and improves walking after stroke: a randomized controlled trial. Stroke 2008;39:3341-50. [PMID: 18757284 DOI: 10.1161/STROKEAHA.108.527531] [Cited by in Crossref: 172] [Cited by in F6Publishing: 86] [Article Influence: 12.3] [Reference Citation Analysis]
46 Sharp KG, Gramer R, Page SJ, Cramer SC. Increased Brain Sensorimotor Network Activation after Incomplete Spinal Cord Injury. J Neurotrauma 2017;34:623-31. [PMID: 27528274 DOI: 10.1089/neu.2016.4503] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
47 Crosson B, Ford A, McGregor KM, Meinzer M, Cheshkov S, Li X, Walker-Batson D, Briggs RW. Functional imaging and related techniques: an introduction for rehabilitation researchers. J Rehabil Res Dev 2010;47:vii-xxxiv. [PMID: 20593321 DOI: 10.1682/jrrd.2010.02.0017] [Cited by in Crossref: 68] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
48 Breier JI, Maher LM, Novak B, Papanicolaou AC. Functional Imaging Before and After Constraint-Induced Language Therapy for Aphasia Using Magnetoencephalography. Neurocase 2006;12:322-31. [DOI: 10.1080/13554790601126054] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 2.1] [Reference Citation Analysis]
49 Kelly BM, Pangilinan PH Jr, Rodriguez GM. The stroke rehabilitation paradigm. Phys Med Rehabil Clin N Am 2007;18:631-50, v. [PMID: 17967358 DOI: 10.1016/j.pmr.2007.07.006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
50 Newton JM, Dong Y, Hidler J, Plummer-D'Amato P, Marehbian J, Albistegui-Dubois RM, Woods RP, Dobkin BH. Reliable assessment of lower limb motor representations with fMRI: use of a novel MR compatible device for real-time monitoring of ankle, knee and hip torques. Neuroimage 2008;43:136-46. [PMID: 18675363 DOI: 10.1016/j.neuroimage.2008.07.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 2.8] [Reference Citation Analysis]
51 Silva JG, Knackfuss IG, Portella CE, Machado S, Velasques B, Bastos VH, Queiroz Rde A, Neves MA, Pacheco M, Vorkapic CF, Cagy M, Piedade R, Ribeiro P. Changes in cortical relative power in patients submitted to a tendon transfer: a pre and post surgery study. Arq Neuropsiquiatr 2007;65:628-32. [PMID: 17876404 DOI: 10.1590/s0004-282x2007000400016] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
52 Sacheli LM, Zapparoli L, Bonandrini R, Preti M, Pelosi C, Sconfienza LM, Banfi G, Paulesu E. How aging affects the premotor control of lower limb movements in simulated gait. Hum Brain Mapp 2020;41:1889-903. [PMID: 31922648 DOI: 10.1002/hbm.24919] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
53 Roy M, Piché M, Chen JI, Peretz I, Rainville P. Cerebral and spinal modulation of pain by emotions. Proc Natl Acad Sci U S A 2009;106:20900-5. [PMID: 19926861 DOI: 10.1073/pnas.0904706106] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 11.8] [Reference Citation Analysis]
54 Ciccarelli O, Toosy AT, Marsden JF, Wheeler-kingshott CM, Miller DH, Matthews PM, Thompson AJ. Functional response to active and passive ankle movements with clinical correlations in patients with primary progressive multiple sclerosis. J Neurol 2006;253:882-91. [DOI: 10.1007/s00415-006-0125-z] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 2.6] [Reference Citation Analysis]
55 Varoqui D, Niu X, Mirbagheri MM. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury. J Neuroeng Rehabil 2014;11:46. [PMID: 24684813 DOI: 10.1186/1743-0003-11-46] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
56 Geiger M, Supiot A, Zory R, Aegerter P, Pradon D, Roche N. The effect of transcranial direct current stimulation (tDCS) on locomotion and balance in patients with chronic stroke: study protocol for a randomised controlled trial. Trials 2017;18:492. [PMID: 29061169 DOI: 10.1186/s13063-017-2219-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
57 Zehr EP, Loadman PM. Persistence of locomotor-related interlimb reflex networks during walking after stroke. Clin Neurophysiol 2012;123:796-807. [PMID: 21945456 DOI: 10.1016/j.clinph.2011.07.049] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 3.6] [Reference Citation Analysis]
58 Jain S, Gourab K, Schindler-Ivens S, Schmit BD. EEG during pedaling: evidence for cortical control of locomotor tasks. Clin Neurophysiol 2013;124:379-90. [PMID: 23036179 DOI: 10.1016/j.clinph.2012.08.021] [Cited by in Crossref: 65] [Cited by in F6Publishing: 46] [Article Influence: 6.5] [Reference Citation Analysis]
59 Shinoura N, Suzuki Y, Yamada R, Tabei Y, Saito K, Yagi K. Marked and rapid recovery of motor strength in premotor area compared with primary motor area in surgery for brain tumors. British Journal of Neurosurgery 2009;23:309-14. [DOI: 10.1080/02688690802638166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
60 Cramer SC, Orr ELR, Cohen MJ, Lacourse MG. Effects of motor imagery training after chronic, complete spinal cord injury. Exp Brain Res 2007;177:233-42. [DOI: 10.1007/s00221-006-0662-9] [Cited by in Crossref: 109] [Cited by in F6Publishing: 96] [Article Influence: 6.8] [Reference Citation Analysis]
61 Crosson B, Moore AB, McGregor KM, Chang YL, Benjamin M, Gopinath K, Sherod ME, Wierenga CE, Peck KK, Briggs RW, Rothi LJ, White KD. Regional changes in word-production laterality after a naming treatment designed to produce a rightward shift in frontal activity. Brain Lang 2009;111:73-85. [PMID: 19811814 DOI: 10.1016/j.bandl.2009.08.001] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 4.1] [Reference Citation Analysis]
62 Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj 2008;22:625-32. [PMID: 18568717 DOI: 10.1080/02699050801941771] [Cited by in Crossref: 115] [Cited by in F6Publishing: 56] [Article Influence: 8.2] [Reference Citation Analysis]
63 Dong Y, Dobkin BH, Cen SY, Wu AD, Winstein CJ. Motor Cortex Activation During Treatment May Predict Therapeutic Gains in Paretic Hand Function After Stroke. Stroke 2006;37:1552-5. [DOI: 10.1161/01.str.0000221281.69373.4e] [Cited by in Crossref: 113] [Cited by in F6Publishing: 48] [Article Influence: 7.1] [Reference Citation Analysis]
64 Tan AQ, Dhaher YY. Contralesional Hemisphere Regulation of Transcranial Magnetic Stimulation-Induced Kinetic Coupling in the Poststroke Lower Limb. Front Neurol 2017;8:373. [PMID: 28824530 DOI: 10.3389/fneur.2017.00373] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
65 Johannsen L, Li KZ, Chechlacz M, Bibi A, Kourtzi Z, Wing AM. Functional neuroimaging of the interference between working memory and the control of periodic ankle movement timing. Neuropsychologia 2013;51:2142-53. [PMID: 23876923 DOI: 10.1016/j.neuropsychologia.2013.07.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
66 Hotz-boendermaker S, Funk M, Summers P, Brugger P, Hepp-reymond M, Curt A, Kollias SS. Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. NeuroImage 2008;39:383-94. [DOI: 10.1016/j.neuroimage.2007.07.065] [Cited by in Crossref: 99] [Cited by in F6Publishing: 92] [Article Influence: 7.1] [Reference Citation Analysis]
67 Winchester P, Mccoll R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J. Changes in Supraspinal Activation Patterns following Robotic Locomotor Therapy in Motor-Incomplete Spinal Cord Injury. Neurorehabil Neural Repair 2005;19:313-24. [DOI: 10.1177/1545968305281515] [Cited by in Crossref: 132] [Cited by in F6Publishing: 121] [Article Influence: 22.0] [Reference Citation Analysis]
68 Dong Y, Winstein CJ, Albistegui-DuBois R, Dobkin BH. Evolution of FMRI activation in the perilesional primary motor cortex and cerebellum with rehabilitation training-related motor gains after stroke: a pilot study. Neurorehabil Neural Repair 2007;21:412-28. [PMID: 17369516 DOI: 10.1177/1545968306298598] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 3.9] [Reference Citation Analysis]
69 Hope JM, Koter RZ, Estes SP, Field-Fote EC. Disrupted Ankle Control and Spasticity in Persons With Spinal Cord Injury: The Association Between Neurophysiologic Measures and Function. A Scoping Review. Front Neurol 2020;11:166. [PMID: 32218765 DOI: 10.3389/fneur.2020.00166] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Romanato M, Spolaor F, Beretta C, Fichera F, Bertoldo A, Volpe D, Sawacha Z. Quantitative assessment of training effects using EksoGT® exoskeleton in Parkinson's disease patients: A randomized single blind clinical trial. Contemporary Clinical Trials Communications 2022;28:100926. [DOI: 10.1016/j.conctc.2022.100926] [Reference Citation Analysis]
71 Ikeda T, Matsushita A, Saotome K, Hasegawa Y, Matsumura A, Sankai Y. Muscle activity during gait-like motion provided by MRI compatible lower-extremity motion simulator. Advanced Robotics 2016;30:459-75. [DOI: 10.1080/01691864.2015.1122552] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
72 Greeley B, Hanada G, Boyd LA, Peters S. The Time for Translation of Mobile Brain and Body Imaging to People With Stroke Is Now. Phys Ther 2021;101:pzab058. [PMID: 33561281 DOI: 10.1093/ptj/pzab058] [Reference Citation Analysis]
73 Xiao X, Lin Q, Lo WL, Mao YR, Shi XC, Cates RS, Zhou SF, Huang DF, Li L. Cerebral Reorganization in Subacute Stroke Survivors after Virtual Reality-Based Training: A Preliminary Study. Behav Neurol 2017;2017:6261479. [PMID: 28720981 DOI: 10.1155/2017/6261479] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
74 Bowden MG, Clark DJ, Kautz SA. Evaluation of abnormal synergy patterns poststroke: relationship of the Fugl-Meyer Assessment to hemiparetic locomotion. Neurorehabil Neural Repair 2010;24:328-37. [PMID: 19794132 DOI: 10.1177/1545968309343215] [Cited by in Crossref: 78] [Cited by in F6Publishing: 71] [Article Influence: 6.0] [Reference Citation Analysis]
75 Jaeger L, Marchal-Crespo L, Wolf P, Riener R, Kollias S, Michels L. Test-retest reliability of fMRI experiments during robot-assisted active and passive stepping. J Neuroeng Rehabil 2015;12:102. [PMID: 26577598 DOI: 10.1186/s12984-015-0097-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 1.6] [Reference Citation Analysis]
76 Kim S, Cho S. Effects of H-Reflex Onset Latency on Gait in Elderly and Hemiplegic Individuals. Medicina 2022;58:716. [DOI: 10.3390/medicina58060716] [Reference Citation Analysis]
77 Verrel J, Almagor E, Schumann F, Lindenberger U, Kühn S. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method. Front Hum Neurosci 2015;9:232. [PMID: 25972804 DOI: 10.3389/fnhum.2015.00232] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
78 Sullivan KJ, Klassen T, Mulroy S. Combined Task-Specific Training and Strengthening Effects On Locomotor Recovery Post-Stroke: A Case Study. Journal of Neurologic Physical Therapy 2006;30:130-41. [DOI: 10.1097/01.npt.0000281950.86311.82] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
79 de Lima-Pardini AC, de Azevedo Neto RM, Coelho DB, Boffino CC, Shergill SS, de Oliveira Souza C, Brant R, Barbosa ER, Cardoso EF, Teixeira LA, Cohen RG, Horak FB, Amaro E Jr. An fMRI-compatible force measurement system for the evaluation of the neural correlates of step initiation. Sci Rep 2017;7:43088. [PMID: 28230070 DOI: 10.1038/srep43088] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
80 Gramann K, Gwin JT, Ferris DP, Oie K, Jung T, Lin C, Liao L, Makeig S. Cognition in action: imaging brain/body dynamics in mobile humans. Reviews in the Neurosciences 2011;22. [DOI: 10.1515/rns.2011.047] [Cited by in Crossref: 154] [Cited by in F6Publishing: 70] [Article Influence: 14.0] [Reference Citation Analysis]
81 Christensen MS, Lundbye-jensen J, Petersen N, Geertsen SS, Paulson OB, Nielsen JB. Watching Your Foot Move--An fMRI Study of Visuomotor Interactions during Foot Movement. Cerebral Cortex 2007;17:1906-17. [DOI: 10.1093/cercor/bhl101] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
82 Conroy BE, Hatfield B, Nichols D. Opening the Black Box of Stroke Rehabilitation with Clinical Practice Improvement Methodology. Topics in Stroke Rehabilitation 2015;12:36-48. [DOI: 10.1310/l3x7-9y2r-aabf-nf5m] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.1] [Reference Citation Analysis]
83 Yavuzer G, Öken Ö, Atay MB, Stam HJ. Effect of Sensory-Amplitude Electric Stimulation on Motor Recovery and Gait Kinematics After Stroke: A Randomized Controlled Study. Archives of Physical Medicine and Rehabilitation 2007;88:710-4. [DOI: 10.1016/j.apmr.2007.02.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
84 DeJong G, Horn SD, Conroy B, Nichols D, Healton EB. Opening the black box of post-stroke rehabilitation: stroke rehabilitation patients, processes, and outcomes. Arch Phys Med Rehabil 2005;86:S1-7. [PMID: 16373135 DOI: 10.1016/j.apmr.2005.09.003] [Cited by in Crossref: 108] [Cited by in F6Publishing: 96] [Article Influence: 6.8] [Reference Citation Analysis]
85 Crémers J, Dessoullières A, Garraux G. Hemispheric specialization during mental imagery of brisk walking. Hum Brain Mapp 2012;33:873-82. [PMID: 21425400 DOI: 10.1002/hbm.21255] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
86 Lepley LK, Grooms DR, Burland JP, Davi SM, Mosher JL, Cormier ML, Lepley AS. Eccentric cross-exercise after anterior cruciate ligament reconstruction: Novel case series to enhance neuroplasticity. Phys Ther Sport 2018;34:55-65. [PMID: 30223234 DOI: 10.1016/j.ptsp.2018.08.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
87 Hollnagel C, Brügger M, Vallery H, Wolf P, Dietz V, Kollias S, Riener R. Brain activity during stepping: A novel MRI-compatible device. Journal of Neuroscience Methods 2011;201:124-30. [DOI: 10.1016/j.jneumeth.2011.07.022] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 3.7] [Reference Citation Analysis]
88 Wang C, Wai Y, Kuo B, Yeh YY, Wang J. Cortical control of gait in healthy humans: an fMRI study. J Neural Transm (Vienna) 2008;115:1149-58. [PMID: 18506392 DOI: 10.1007/s00702-008-0058-z] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 3.8] [Reference Citation Analysis]
89 Promjunyakul NO, Schmit BD, Schindler-Ivens SM. A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke. Front Hum Neurosci 2015;9:324. [PMID: 26089789 DOI: 10.3389/fnhum.2015.00324] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
90 Rydwik E, Eliasson S, Akner G. The effect of exercise of the affected foot in stroke patients-a randomized controlled pilot trial. Clin Rehabil 2006;20:645-55. [DOI: 10.1191/0269215506cre986oa] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
91 de Bode S, Mathern GW, Bookheimer S, Dobkin B. Locomotor training remodels fMRI sensorimotor cortical activations in children after cerebral hemispherectomy. Neurorehabil Neural Repair 2007;21:497-508. [PMID: 17369509 DOI: 10.1177/1545968307299523] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
92 Anand M, Diekfuss JA, Slutsky-Ganesh AB, Grooms DR, Bonnette S, Barber Foss KD, DiCesare CA, Hunnicutt JL, Myer GD. Integrated 3D motion analysis with functional magnetic resonance neuroimaging to identify neural correlates of lower extremity movement. J Neurosci Methods 2021;355:109108. [PMID: 33705853 DOI: 10.1016/j.jneumeth.2021.109108] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
93 Park SH, Casamento-moran A, Singer ML, Ernster AE, Yacoubi B, Humbert IA, Christou EA. Integration of visual feedback and motor learning: Corticospinal vs. corticobulbar pathway. Human Movement Science 2018;58:88-96. [DOI: 10.1016/j.humov.2018.01.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
94 Zapparoli L, Seghezzi S, Sacheli LM, Verga C, Banfi G, Paulesu E. Eyes wide shut: How visual cues affect brain patterns of simulated gait. Hum Brain Mapp 2020;41:4248-63. [PMID: 32639101 DOI: 10.1002/hbm.25123] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
95 Burke E, Dobkin BH, Noser EA, Enney LA, Cramer SC. Predictors and biomarkers of treatment gains in a clinical stroke trial targeting the lower extremity. Stroke 2014;45:2379-84. [PMID: 25070961 DOI: 10.1161/STROKEAHA.114.005436] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
96 Wirth B, van Hedel H, Curt A. Foot control in incomplete SCI: distinction between paresis and dexterity. Neurological Research 2013;30:52-60. [DOI: 10.1179/174313208x297030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
97 Enzinger C, Dawes H, Johansen-Berg H, Wade D, Bogdanovic M, Collett J, Guy C, Kischka U, Ropele S, Fazekas F, Matthews PM. Brain activity changes associated with treadmill training after stroke. Stroke 2009;40:2460-7. [PMID: 19461018 DOI: 10.1161/STROKEAHA.109.550053] [Cited by in Crossref: 104] [Cited by in F6Publishing: 48] [Article Influence: 8.0] [Reference Citation Analysis]
98 Geroin C, Picelli A, Munari D, Waldner A, Tomelleri C, Smania N. Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin Rehabil 2011;25:537-48. [DOI: 10.1177/0269215510389497] [Cited by in Crossref: 76] [Cited by in F6Publishing: 66] [Article Influence: 6.9] [Reference Citation Analysis]
99 Tsang CSL, Chong DYK, Pang MYC. Cognitive-motor interference in walking after stroke: test–retest reliability and validity of dual-task walking assessments. Clin Rehabil 2019;33:1066-78. [DOI: 10.1177/0269215519828146] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
100 Dobkin BH. Progressive Staging of Pilot Studies to Improve Phase III Trials for Motor Interventions. Neurorehabil Neural Repair 2009;23:197-206. [PMID: 19240197 DOI: 10.1177/1545968309331863] [Cited by in Crossref: 126] [Cited by in F6Publishing: 118] [Article Influence: 9.7] [Reference Citation Analysis]
101 Reis PM, Hebenstreit F, Gabsteiger F, von Tscharner V, Lochmann M. Methodological aspects of EEG and body dynamics measurements during motion. Front Hum Neurosci 2014;8:156. [PMID: 24715858 DOI: 10.3389/fnhum.2014.00156] [Cited by in Crossref: 86] [Cited by in F6Publishing: 56] [Article Influence: 10.8] [Reference Citation Analysis]
102 Yang JF, Gorassini M. Spinal and brain control of human walking: implications for retraining of walking. Neuroscientist 2006;12:379-89. [PMID: 16957000 DOI: 10.1177/1073858406292151] [Cited by in Crossref: 111] [Cited by in F6Publishing: 104] [Article Influence: 6.9] [Reference Citation Analysis]
103 Jaeger L, Marchal-Crespo L, Wolf P, Riener R, Kollias S, Michels L. Test-retest reliability of fMRI experiments during robot-assisted active and passive stepping. J Neuroeng Rehabil 2015;12:102. [PMID: 26577598 DOI: 10.1186/s12984-015-0097-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
104 Sacheli LM, Zapparoli L, De Santis C, Preti M, Pelosi C, Ursino N, Zerbi A, Banfi G, Paulesu E. Mental steps: Differential activation of internal pacemakers in motor imagery and in mental imitation of gait. Hum Brain Mapp 2017;38:5195-216. [PMID: 28731517 DOI: 10.1002/hbm.23725] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
105 Al-Yahya E, Johansen-Berg H, Kischka U, Zarei M, Cockburn J, Dawes H. Prefrontal Cortex Activation While Walking Under Dual-Task Conditions in Stroke: A Multimodal Imaging Study. Neurorehabil Neural Repair 2016;30:591-9. [PMID: 26493732 DOI: 10.1177/1545968315613864] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 8.4] [Reference Citation Analysis]
106 Pechenkova E, Nosikova I, Rumshiskaya A, Litvinova L, Rukavishnikov I, Mershina E, Sinitsyn V, Van Ombergen A, Jeurissen B, Jillings S, Laureys S, Sijbers J, Grishin A, Chernikova L, Naumov I, Kornilova L, Wuyts FL, Tomilovskaya E, Kozlovskaya I. Alterations of Functional Brain Connectivity After Long-Duration Spaceflight as Revealed by fMRI. Front Physiol 2019;10:761. [PMID: 31333476 DOI: 10.3389/fphys.2019.00761] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
107 Yen CL, Wang RY, Liao KK, Huang CC, Yang YR. Gait training induced change in corticomotor excitability in patients with chronic stroke. Neurorehabil Neural Repair 2008;22:22-30. [PMID: 17507641 DOI: 10.1177/1545968307301875] [Cited by in Crossref: 75] [Cited by in F6Publishing: 74] [Article Influence: 5.0] [Reference Citation Analysis]
108 Yavuzer G, Geler-Külcü D, Sonel-Tur B, Kutlay S, Ergin S, Stam HJ. Neuromuscular electric stimulation effect on lower-extremity motor recovery and gait kinematics of patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil 2006;87:536-40. [PMID: 16571394 DOI: 10.1016/j.apmr.2005.12.041] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
109 Wieser M, Haefeli J, Bütler L, Jäncke L, Riener R, Koeneke S. Temporal and spatial patterns of cortical activation during assisted lower limb movement. Exp Brain Res 2010;203:181-91. [DOI: 10.1007/s00221-010-2223-5] [Cited by in Crossref: 55] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
110 Piramide N, Agosta F, Sarasso E, Canu E, Volontè MA, Filippi M. Brain activity during lower limb movements in Parkinson’s disease patients with and without freezing of gait. J Neurol 2020;267:1116-26. [DOI: 10.1007/s00415-019-09687-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
111 Koenraadt KL, Duysens J, Smeenk M, Keijsers NL. Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity. J Neural Eng 2012;9:046010. [PMID: 22763344 DOI: 10.1088/1741-2560/9/4/046010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
112 Dawes H, Enzinger C, Johansen-Berg H, Bogdanovic M, Guy C, Collett J, Izadi H, Stagg C, Wade D, Matthews PM. Walking performance and its recovery in chronic stroke in relation to extent of lesion overlap with the descending motor tract. Exp Brain Res 2008;186:325-33. [PMID: 18157670 DOI: 10.1007/s00221-007-1237-0] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 3.4] [Reference Citation Analysis]
113 Ciccarelli O, Toosy AT, Marsden JF, Wheeler-kingshott CM, Sahyoun C, Matthews PM, Miller DH, Thompson AJ. Identifying brain regions for integrative sensorimotor processing with ankle movements. Exp Brain Res 2005;166:31-42. [DOI: 10.1007/s00221-005-2335-5] [Cited by in Crossref: 104] [Cited by in F6Publishing: 84] [Article Influence: 6.1] [Reference Citation Analysis]
114 Okabe N, Himi N, Maruyama-Nakamura E, Hayashi N, Narita K, Miyamoto O. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex. PLoS One 2017;12:e0187413. [PMID: 29095902 DOI: 10.1371/journal.pone.0187413] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
115 Flamand VH, Schneider C. Noninvasive and painless magnetic stimulation of nerves improved brain motor function and mobility in a cerebral palsy case. Arch Phys Med Rehabil 2014;95:1984-90. [PMID: 24907638 DOI: 10.1016/j.apmr.2014.05.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
116 Halder P, Curt A, Brem S, Lang-dullenkopf A, Bucher K, Kollias S, Brandeis D. Preserved aspects of cortical foot control in paraplegia. NeuroImage 2006;31:692-8. [DOI: 10.1016/j.neuroimage.2005.12.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 0.9] [Reference Citation Analysis]
117 Enzinger C, Johansen-Berg H, Dawes H, Bogdanovic M, Collett J, Guy C, Ropele S, Kischka U, Wade D, Fazekas F, Matthews PM. Functional MRI correlates of lower limb function in stroke victims with gait impairment. Stroke 2008;39:1507-13. [PMID: 18340092 DOI: 10.1161/STROKEAHA.107.501999] [Cited by in Crossref: 72] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
118 Hackney ME, Lee HL, Battisto J, Crosson B, McGregor KM. Context-Dependent Neural Activation: Internally and Externally Guided Rhythmic Lower Limb Movement in Individuals With and Without Neurodegenerative Disease. Front Neurol 2015;6:251. [PMID: 26696952 DOI: 10.3389/fneur.2015.00251] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
119 Mohammadi R, Abdollahi Khorasgani M, Tabatabaei M, Grampurohit N. Effects of Elastic Therapeutic Taping on Joint Position Sense of the Ankle in Stroke Survivors. Am J Phys Med Rehabil 2019;98:830-4. [PMID: 30964751 DOI: 10.1097/PHM.0000000000001191] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
120 Jaatela J, Aydogan DB, Nurmi T, Vallinoja J, Piitulainen H. Identification of Proprioceptive Thalamocortical Tracts in Children: Comparison of fMRI, MEG, and Manual Seeding of Probabilistic Tractography. Cereb Cortex 2022:bhab444. [PMID: 35040948 DOI: 10.1093/cercor/bhab444] [Reference Citation Analysis]
121 Lee DH, Chang WN, Jeon HJ. Comparison of ground reaction force during gait between the nonparetic side in hemiparetic patients and the dominant side in healthy subjects. J Exerc Rehabil 2020;16:344-50. [PMID: 32913839 DOI: 10.12965/jer.2040488.244] [Reference Citation Analysis]
122 Gehringer JE, Arpin DJ, Heinrichs-Graham E, Wilson TW, Kurz MJ. Neurophysiological changes in the visuomotor network after practicing a motor task. J Neurophysiol 2018;120:239-49. [PMID: 29589817 DOI: 10.1152/jn.00020.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
123 Li J, Dimitrakopoulos GN, Thangavel P, Chen G, Sun Y, Guo Z, Yu H, Thakor N, Bezerianos A. What Are Spectral and Spatial Distributions of EEG-EMG Correlations in Overground Walking? An Exploratory Study. IEEE Access 2019;7:143935-46. [DOI: 10.1109/access.2019.2945602] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
124 Groff BR, Antonellis P, Schmid KK, Knarr BA, Stergiou N. Stride-time variability is related to sensorimotor cortical activation during forward and backward walking. Neurosci Lett 2019;692:150-8. [PMID: 30367957 DOI: 10.1016/j.neulet.2018.10.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
125 Meyer C, Killeen T, Easthope CS, Curt A, Bolliger M, Linnebank M, Zörner B, Filli L. Familiarization with treadmill walking: How much is enough? Sci Rep 2019;9:5232. [PMID: 30914746 DOI: 10.1038/s41598-019-41721-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 10.3] [Reference Citation Analysis]
126 Ng SS, Hui-chan CW. Transcutaneous Electrical Nerve Stimulation Combined With Task-Related Training Improves Lower Limb Functions in Subjects With Chronic Stroke. Stroke 2007;38:2953-9. [DOI: 10.1161/strokeaha.107.490318] [Cited by in Crossref: 95] [Cited by in F6Publishing: 30] [Article Influence: 6.3] [Reference Citation Analysis]
127 Abbud G, Li K, Demont R. Attentional requirements of walking according to the gait phase and onset of auditory stimuli. Gait & Posture 2009;30:227-32. [DOI: 10.1016/j.gaitpost.2009.05.013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
128 Parikh V, Medley A, Chung YC, Goh HT. Optimal timing and neural loci: a scoping review on the effect of non-invasive brain stimulation on post-stroke gait and balance recovery. Top Stroke Rehabil 2021;:1-17. [PMID: 34859744 DOI: 10.1080/10749357.2021.1990467] [Reference Citation Analysis]
129 Katiuscia S, Franco C, Federico D, Davide M, Sergio D, Giuliano G. Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention. Brain Research 2009;1297:124-34. [DOI: 10.1016/j.brainres.2009.08.049] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
130 Sütbeyaz S, Yavuzer G, Sezer N, Koseoglu BF. Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial. Arch Phys Med Rehabil 2007;88:555-9. [PMID: 17466722 DOI: 10.1016/j.apmr.2007.02.034] [Cited by in Crossref: 179] [Cited by in F6Publishing: 116] [Article Influence: 11.9] [Reference Citation Analysis]
131 Kapreli E, Athanasopoulos S, Papathanasiou M, Van Hecke P, Strimpakos N, Gouliamos A, Peeters R, Sunaert S. Lateralization of brain activity during lower limb joints movement. An fMRI study. NeuroImage 2006;32:1709-21. [DOI: 10.1016/j.neuroimage.2006.05.043] [Cited by in Crossref: 100] [Cited by in F6Publishing: 86] [Article Influence: 6.3] [Reference Citation Analysis]
132 Ito T, Tsubahara A, Shinkoda K, Yoshimura Y, Kobara K, Osaka H. Excitability changes in intracortical neural circuits induced by differentially controlled walking patterns. PLoS One 2015;10:e0117931. [PMID: 25688972 DOI: 10.1371/journal.pone.0117931] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
133 Dobkin BH. Curiosity and cure: translational research strategies for neural repair-mediated rehabilitation. Dev Neurobiol 2007;67:1133-47. [PMID: 17514711 DOI: 10.1002/dneu.20514] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.3] [Reference Citation Analysis]
134 Dobkin BH. Training and exercise to drive poststroke recovery. Nat Clin Pract Neurol 2008;4:76-85. [PMID: 18256679 DOI: 10.1038/ncpneuro0709] [Cited by in Crossref: 122] [Cited by in F6Publishing: 102] [Article Influence: 8.7] [Reference Citation Analysis]
135 Melo MC, Macedo DR, Soares AB. Divergent Findings in Brain Reorganization After Spinal Cord Injury: A Review. J Neuroimaging 2020;30:410-27. [PMID: 32418286 DOI: 10.1111/jon.12711] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
136 Saenko IV, Kremneva EI, Glebova OV, Konovalov RN, Chernikova LA, Kozlovskaya IB. New approaches in the rehabilitation of patients with central nervous system lesions based on the gravitational mechanisms. Hum Physiol 2017;43:591-600. [DOI: 10.1134/s0362119717050139] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
137 Dobkin BH. Behavioral, Temporal, and Spatial Targets for Cellular Transplants as Adjuncts to Rehabilitation for Stroke. Stroke 2007;38:832-9. [DOI: 10.1161/01.str.0000248408.49398.9c] [Cited by in Crossref: 24] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
138 Blickenstorfer A, Kleiser R, Keller T, Keisker B, Meyer M, Riener R, Kollias S. Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI. Hum Brain Mapp 2009;30:963-75. [PMID: 18344193 DOI: 10.1002/hbm.20559] [Cited by in Crossref: 56] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
139 Bulea TC, Kim J, Damiano DL, Stanley CJ, Park HS. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking. Front Hum Neurosci 2015;9:247. [PMID: 26029077 DOI: 10.3389/fnhum.2015.00247] [Cited by in Crossref: 71] [Cited by in F6Publishing: 58] [Article Influence: 10.1] [Reference Citation Analysis]
140 Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. Neuroimage 2011;54:1289-96. [PMID: 20832484 DOI: 10.1016/j.neuroimage.2010.08.066] [Cited by in Crossref: 286] [Cited by in F6Publishing: 231] [Article Influence: 23.8] [Reference Citation Analysis]
141 Kurz MJ, Proskovec AL, Gehringer JE, Becker KM, Arpin DJ, Heinrichs-Graham E, Wilson TW. Developmental Trajectory of Beta Cortical Oscillatory Activity During a Knee Motor Task. Brain Topogr 2016;29:824-33. [PMID: 27277428 DOI: 10.1007/s10548-016-0500-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
142 Mulroy SJ, Klassen T, Gronley JK, Eberly VJ, Brown DA, Sullivan KJ. Gait Parameters Associated With Responsiveness to Treadmill Training With Body-Weight Support After Stroke: An Exploratory Study. Physical Therapy 2010;90:209-23. [DOI: 10.2522/ptj.20090141] [Cited by in Crossref: 73] [Cited by in F6Publishing: 58] [Article Influence: 6.1] [Reference Citation Analysis]
143 MacIntosh BJ, McIlroy WE, Mraz R, Staines WR, Black SE, Graham SJ. Electrodermal recording and fMRI to inform sensorimotor recovery in stroke patients. Neurorehabil Neural Repair 2008;22:728-36. [PMID: 18784267 DOI: 10.1177/1545968308316386] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
144 Takahashi Y, Fujiwara T, Yamaguchi T, Matsunaga H, Kawakami M, Honaga K, Mizuno K, Liu M. Voluntary contraction enhances spinal reciprocal inhibition induced by patterned electrical stimulation in patients with stroke. Restor Neurol Neurosci 2018;36:99-105. [PMID: 29439361 DOI: 10.3233/RNN-170759] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
145 Fujimoto H, Mihara M, Hattori N, Hatakenaka M, Kawano T, Yagura H, Miyai I, Mochizuki H. Cortical changes underlying balance recovery in patients with hemiplegic stroke. NeuroImage 2014;85:547-54. [DOI: 10.1016/j.neuroimage.2013.05.014] [Cited by in Crossref: 59] [Cited by in F6Publishing: 44] [Article Influence: 7.4] [Reference Citation Analysis]
146 Casellato C, Ferrante S, Gandolla M, Volonterio N, Ferrigno G, Baselli G, Frattini T, Martegani A, Molteni F, Pedrocchi A. Simultaneous measurements of kinematics and fMRI: compatibility assessment and case report on recovery evaluation of one stroke patient. J Neuroeng Rehabil 2010;7:49. [PMID: 20863391 DOI: 10.1186/1743-0003-7-49] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
147 Field-Fote EC, Yang JF, Basso DM, Gorassini MA. Supraspinal Control Predicts Locomotor Function and Forecasts Responsiveness to Training after Spinal Cord Injury. J Neurotrauma 2017;34:1813-25. [PMID: 27673569 DOI: 10.1089/neu.2016.4565] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
148 Bai B, Liu J, Ke L, Guo H. Spatiotemporal independent component analysis combine general linear model applied to fMRI for eliminating neural noise. Australas Phys Eng Sci Med 2014;37:121-32. [PMID: 24532392 DOI: 10.1007/s13246-014-0242-4] [Reference Citation Analysis]
149 Kojović J, Miljković N, Janković MM, Popović DB. Recovery of motor function after stroke: A polymyography-based analysis. Journal of Neuroscience Methods 2011;194:321-8. [DOI: 10.1016/j.jneumeth.2010.10.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
150 Orr EL, Lacourse MG, Cohen MJ, Cramer SC. Cortical activation during executed, imagined, and observed foot movements. NeuroReport 2008;19:625-30. [DOI: 10.1097/wnr.0b013e3282fbf9e0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
151 Dobkin BH. Neurobiology of rehabilitation. Ann N Y Acad Sci 2004;1038:148-70. [PMID: 15838110 DOI: 10.1196/annals.1315.024] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 3.9] [Reference Citation Analysis]
152 Zehr EP, Barss TS, Dragert K, Frigon A, Vasudevan EV, Haridas C, Hundza S, Kaupp C, Klarner T, Klimstra M, Komiyama T, Loadman PM, Mezzarane RA, Nakajima T, Pearcey GE, Sun Y. Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Exp Brain Res 2016;234:3059-81. [PMID: 27421291 DOI: 10.1007/s00221-016-4715-4] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 9.3] [Reference Citation Analysis]
153 Tomita Y, Usuda S. Temporal motor coordination in the ankle joint following upper motor neuron lesions. J Phys Ther Sci 2013;25:539-44. [PMID: 24259798 DOI: 10.1589/jpts.25.539] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
154 Bartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord 2008;23 Suppl 2:S461-7. [PMID: 18668627 DOI: 10.1002/mds.21912] [Cited by in Crossref: 82] [Cited by in F6Publishing: 78] [Article Influence: 5.9] [Reference Citation Analysis]
155 Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol 2004;3:528-36. [PMID: 15324721 DOI: 10.1016/S1474-4422(04)00851-8] [Cited by in Crossref: 391] [Cited by in F6Publishing: 114] [Article Influence: 21.7] [Reference Citation Analysis]
156 Sacco K, Cauda F, D'Agata F, Duca S, Zettin M, Virgilio R, Nascimbeni A, Belforte G, Eula G, Gastaldi L, Appendino S, Geminiani G. A combined robotic and cognitive training for locomotor rehabilitation: evidences of cerebral functional reorganization in two chronic traumatic brain injured patients. Front Hum Neurosci 2011;5:146. [PMID: 22275890 DOI: 10.3389/fnhum.2011.00146] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
157 Wirth B, van Hedel HJA, Curt A. Ankle dexterity is less impaired than muscle strength in incomplete spinal cord lesion. J Neurol 2008;255:273-9. [DOI: 10.1007/s00415-008-0724-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
158 Villiger M, Estévez N, Hepp-Reymond MC, Kiper D, Kollias SS, Eng K, Hotz-Boendermaker S. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements. PLoS One 2013;8:e72403. [PMID: 24015241 DOI: 10.1371/journal.pone.0072403] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 6.9] [Reference Citation Analysis]
159 Presacco A, Forrester LW, Contreras-Vidal JL. Decoding intra-limb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals. IEEE Trans Neural Syst Rehabil Eng 2012;20:212-9. [PMID: 22438336 DOI: 10.1109/TNSRE.2012.2188304] [Cited by in Crossref: 70] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
160 Fisher B. Intervention that challenges the nervous system confronts the challenge of real-world clinical practice. J Neurol Phys Ther 2011;35:148-9. [PMID: 21934377 DOI: 10.1097/NPT.0b013e31822a5087] [Reference Citation Analysis]
161 Chen X, Wan L, Qin W, Zheng W, Qi Z, Chen N, Li K. Functional Preservation and Reorganization of Brain during Motor Imagery in Patients with Incomplete Spinal Cord Injury: A Pilot fMRI Study. Front Hum Neurosci 2016;10:46. [PMID: 26913000 DOI: 10.3389/fnhum.2016.00046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
162 Presacco A, Goodman R, Forrester L, Contreras-Vidal JL. Neural decoding of treadmill walking from noninvasive electroencephalographic signals. J Neurophysiol 2011;106:1875-87. [PMID: 21768121 DOI: 10.1152/jn.00104.2011] [Cited by in Crossref: 139] [Cited by in F6Publishing: 92] [Article Influence: 12.6] [Reference Citation Analysis]
163 Mehta JP, Verber MD, Wieser JA, Schmit BD, Schindler-ivens SM. A novel technique for examining human brain activity associated with pedaling using fMRI. Journal of Neuroscience Methods 2009;179:230-9. [DOI: 10.1016/j.jneumeth.2009.01.029] [Cited by in Crossref: 62] [Cited by in F6Publishing: 40] [Article Influence: 4.8] [Reference Citation Analysis]
164 Zehr EP, Loadman PM, Hundza SR. Neural control of rhythmic arm cycling after stroke. J Neurophysiol 2012;108:891-905. [PMID: 22572949 DOI: 10.1152/jn.01152.2011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
165 Wittenberg E, Thompson J, Nam CS, Franz JR. Neuroimaging of Human Balance Control: A Systematic Review. Front Hum Neurosci 2017;11:170. [PMID: 28443007 DOI: 10.3389/fnhum.2017.00170] [Cited by in Crossref: 59] [Cited by in F6Publishing: 45] [Article Influence: 11.8] [Reference Citation Analysis]
166 Yoon T, Vanden Noven ML, Nielson KA, Hunter SK. Brain areas associated with force steadiness and intensity during isometric ankle dorsiflexion in men and women. Exp Brain Res 2014;232:3133-45. [PMID: 24903120 DOI: 10.1007/s00221-014-3976-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
167 Forrester LW, Hanley DF, Macko RF. Effects of treadmill exercise on transcranial magnetic stimulation-induced excitability to quadriceps after stroke. Arch Phys Med Rehabil 2006;87:229-34. [PMID: 16442977 DOI: 10.1016/j.apmr.2005.10.016] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 2.4] [Reference Citation Analysis]
168 Rigosa J, Panarese A, Dominici N, Friedli L, van den Brand R, Carpaneto J, DiGiovanna J, Courtine G, Micera S. Decoding bipedal locomotion from the rat sensorimotor cortex. J Neural Eng 2015;12:056014. [PMID: 26331532 DOI: 10.1088/1741-2560/12/5/056014] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
169 Toyomura A, Shibata M, Kuriki S. Self-paced and externally triggered rhythmical lower limb movements: a functional MRI study. Neurosci Lett 2012;516:39-44. [PMID: 22480693 DOI: 10.1016/j.neulet.2012.03.049] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
170 Silva JG, Knackfuss IG, Portella CE, Bastos VH, Machado Dde C, Basile L, Piedade R, Ribeiro P. [EEG spectral coherence at patients submitted to tendon transfer surgery: study pre- and post-surgery]. Arq Neuropsiquiatr 2006;64:473-7. [PMID: 16917622 DOI: 10.1590/s0004-282x2006000300023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
171 Belforte G, Eula G. Design of an active-passive device for human ankle movement during functional magnetic resonance imaging analysis. Proc Inst Mech Eng H 2012;226:21-32. [PMID: 22888581 DOI: 10.1177/0954411911426946] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
172 Verma R, Arya KN, Sharma P, Garg RK. Understanding gait control in post-stroke: implications for management. J Bodyw Mov Ther 2012;16:14-21. [PMID: 22196422 DOI: 10.1016/j.jbmt.2010.12.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 3.4] [Reference Citation Analysis]
173 Ito T, Tsubahara A, Shinkoda K, Suzuki K, Yoshimura Y, Kobara K, Osaka H, Watanabe S. Effects of volitional walking control on postexercise changes in motor cortical excitability. Neuroreport 2014;25:44-8. [PMID: 24157703 DOI: 10.1097/WNR.0000000000000041] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
174 Nieuwhof F, Bloem BR, Reelick MF, Aarts E, Maidan I, Mirelman A, Hausdorff JM, Toni I, Helmich RC. Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain 2017;140:1384-98. [DOI: 10.1093/brain/awx042] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
175 Holly LT, Dong Y, Albistegui-DuBois R, Marehbian J, Dobkin B. Cortical reorganization in patients with cervical spondylotic myelopathy. J Neurosurg Spine 2007;6:544-51. [PMID: 17561743 DOI: 10.3171/spi.2007.6.6.5] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 3.0] [Reference Citation Analysis]
176 Lord S, Mcpherson KM, Mcnaughton HK, Rochester L, Weatherall M. How feasible is the attainment of community ambulation after stroke? A pilot randomized controlled trial to evaluate community-based physiotherapy in subacute stroke. Clin Rehabil 2008;22:215-25. [DOI: 10.1177/0269215507081922] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 3.5] [Reference Citation Analysis]
177 Tang PF, Ko YH, Luo ZA, Yeh FC, Chen SH, Tseng WY. Tract-specific and region of interest analysis of corticospinal tract integrity in subcortical ischemic stroke: reliability and correlation with motor function of affected lower extremity. AJNR Am J Neuroradiol 2010;31:1023-30. [PMID: 20110374 DOI: 10.3174/ajnr.A1981] [Cited by in Crossref: 34] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
178 Hilderley AJ, Taylor MJ, Fehlings D, Chen JL, Wright FV. Optimization of fMRI methods to determine laterality of cortical activation during ankle movements of children with unilateral cerebral palsy. Int J Dev Neurosci 2018;66:54-62. [PMID: 29413879 DOI: 10.1016/j.ijdevneu.2018.01.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
179 Udina E, Puigdemasa A, Navarro X. Passive and active exercise improve regeneration and muscle reinnervation after peripheral nerve injury in the rat. Muscle Nerve 2011;43:500-9. [PMID: 21305568 DOI: 10.1002/mus.21912] [Cited by in Crossref: 60] [Cited by in F6Publishing: 50] [Article Influence: 5.5] [Reference Citation Analysis]
180 Kamath T, Pfeifer M, Banerjee-guenette P, Hunter T, Ito J, Salbach NM, Wright V, Levac D. Reliability of the Motor Learning Strategy Rating Instrument for Children and Youth with Acquired Brain Injury. Physical & Occupational Therapy In Pediatrics 2011;32:288-305. [DOI: 10.3109/01942638.2012.672551] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
181 Charalambous CC, Bowden MG, Adkins DL. Motor Cortex and Motor Cortical Interhemispheric Communication in Walking After Stroke: The Roles of Transcranial Magnetic Stimulation and Animal Models in Our Current and Future Understanding. Neurorehabil Neural Repair 2016;30:94-102. [PMID: 25878201 DOI: 10.1177/1545968315581418] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
182 Malešević J, Konstantinović L, Bijelić G, Malešević N. Smart Protocols for Physical Therapy of Foot Drop Based on Functional Electrical Stimulation: A Case Study. Healthcare (Basel) 2021;9:502. [PMID: 33925814 DOI: 10.3390/healthcare9050502] [Reference Citation Analysis]
183 Bürki CN, Bridenbaugh SA, Reinhardt J, Stippich C, Kressig RW, Blatow M. Imaging gait analysis: An fMRI dual task study. Brain Behav 2017;7:e00724. [PMID: 28828204 DOI: 10.1002/brb3.724] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
184 Castermans T, Duvinage M, Cheron G, Dutoit T. Towards effective non-invasive brain-computer interfaces dedicated to gait rehabilitation systems. Brain Sci 2013;4:1-48. [PMID: 24961699 DOI: 10.3390/brainsci4010001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
185 Radinmehr H, Ansari NN, Naghdi S, Tabatabaei A, Moghimi E. Comparison of Therapeutic Ultrasound and Radial Shock Wave Therapy in the Treatment of Plantar Flexor Spasticity After Stroke: A Prospective, Single-blind, Randomized Clinical Trial. J Stroke Cerebrovasc Dis 2019;28:1546-54. [PMID: 30935809 DOI: 10.1016/j.jstrokecerebrovasdis.2019.03.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
186 Beaulieu L, Massé-alarie H, Ribot-ciscar E, Schneider C. Reliability of lower limb transcranial magnetic stimulation outcomes in the ipsi- and contralesional hemispheres of adults with chronic stroke. Clinical Neurophysiology 2017;128:1290-8. [DOI: 10.1016/j.clinph.2017.04.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
187 Koseoglu BF, Dogan A, Tatli HU, Sezgin Ozcan D, Polat CS. Can kinesio tape be used as an ankle training method in the rehabilitation of the stroke patients? Complement Ther Clin Pract 2017;27:46-51. [PMID: 28438279 DOI: 10.1016/j.ctcp.2017.03.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 3.2] [Reference Citation Analysis]
188 Kurz MJ, Wilson TW, Corr B, Volkman KG. Neuromagnetic Activity of the Somatosensory Cortices Associated With Body Weight–Supported Treadmill Training in Children With Cerebral Palsy. Journal of Neurologic Physical Therapy 2012;36:166-72. [DOI: 10.1097/npt.0b013e318251776a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
189 Oliva-Lozano JM, Martín-Fuentes I, Muyor JM. Validity and Reliability of an Inertial Device for Measuring Dynamic Weight-Bearing Ankle Dorsiflexion. Sensors (Basel) 2020;20:E399. [PMID: 31936756 DOI: 10.3390/s20020399] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
190 Picelli A, Chemello E, Castellazzi P, Roncari L, Waldner A, Saltuari L, Smania N. Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: A pilot, double blind, randomized controlled trial. Restor Neurol Neurosci 2015;33:357-68. [PMID: 26410579 DOI: 10.3233/RNN-140474] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
191 Dobkin BH. Clinical practice. Rehabilitation after stroke. N Engl J Med 2005;352:1677-84. [PMID: 15843670 DOI: 10.1056/NEJMcp043511] [Cited by in Crossref: 438] [Cited by in F6Publishing: 170] [Article Influence: 25.8] [Reference Citation Analysis]
192 Alexander LD, Black SE, Patterson KK, Gao F, Danells CJ, McIlroy WE. Association between gait asymmetry and brain lesion location in stroke patients. Stroke 2009;40:537-44. [PMID: 19109546 DOI: 10.1161/STROKEAHA.108.527374] [Cited by in Crossref: 83] [Cited by in F6Publishing: 31] [Article Influence: 5.9] [Reference Citation Analysis]
193 Boyne P, Doren S, Scholl V, Staggs E, Whitesel D, Maloney T, Awosika O, Kissela B, Dunning K, Vannest J. Functional magnetic resonance brain imaging of imagined walking to study locomotor function after stroke. Clin Neurophysiol 2021;132:167-77. [PMID: 33291023 DOI: 10.1016/j.clinph.2020.11.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
194 Regnaux JP, Roberston J, Smail DB, Daniel O, Bussel B. Human treadmill walking needs attention. J Neuroeng Rehabil 2006;3:19. [PMID: 16923186 DOI: 10.1186/1743-0003-3-19] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
195 Bruijn SM, Van Impe A, Duysens J, Swinnen SP. White matter microstructural organization and gait stability in older adults. Front Aging Neurosci 2014;6:104. [PMID: 24959139 DOI: 10.3389/fnagi.2014.00104] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 5.0] [Reference Citation Analysis]
196 Ciccarelli O, Toosy AT, Marsden JF, Wheeler-Kingshott CM, Sahyoun C, Matthews PM, Miller DH, Thompson AJ. Identifying brain regions for integrative sensorimotor processing with ankle movements. Exp Brain Res 2005;166:31-42. [PMID: 16034570 DOI: 10.1007/s00221-005-2335-5] [Cited by in Crossref: 107] [Cited by in F6Publishing: 1] [Article Influence: 6.3] [Reference Citation Analysis]
197 Katschnig P, Schwingenschuh P, Jehna M, Svehlík M, Petrovic K, Ropele S, Zwick EB, Ott E, Fazekas F, Schmidt R, Enzinger C. Altered functional organization of the motor system related to ankle movements in Parkinson's disease: insights from functional MRI. J Neural Transm (Vienna) 2011;118:783-93. [PMID: 21437717 DOI: 10.1007/s00702-011-0621-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
198 Coelho TS, Bitencourt ACS, Bazan R, de Souza LAPS, Luvizutto GJ. Hip abduction with ankle dorsiflexion (HAAD) score and trunk seating control within 72 h after stroke predicts long-term disability: A cohort study. J Bodyw Mov Ther 2021;27:710-6. [PMID: 34391311 DOI: 10.1016/j.jbmt.2021.05.018] [Reference Citation Analysis]
199 Gramigna V, Pellegrino G, Cerasa A, Cutini S, Vasta R, Olivadese G, Martino I, Quattrone A. Near-Infrared Spectroscopy in Gait Disorders: Is It Time to Begin? Neurorehabil Neural Repair 2017;31:402-12. [PMID: 28196453 DOI: 10.1177/1545968317693304] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
200 Peters S, Eng JJ, Liu-Ambrose T, Borich MR, Dao E, Amanian A, Boyd LA. Brain activity associated with Dual-task performance of Ankle motor control during cognitive challenge. Brain Behav 2019;9:e01349. [PMID: 31265216 DOI: 10.1002/brb3.1349] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]