BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chong Y, Liu Q, Ge C. Advances in oxidase-mimicking nanozymes: Classification, activity regulation and biomedical applications. Nano Today 2021;37:101076. [DOI: 10.1016/j.nantod.2021.101076] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Dou Y, Yang R, Xiao Y, Wu J, Qu L, Sun Y, Li Z. Teaching a fluorophore new tricks: Exploiting the light-driven organic oxidase nanozyme properties of thiazolothiazole for highly sensitive biomedical detection. Sensors and Actuators B: Chemical 2022;354:131226. [DOI: 10.1016/j.snb.2021.131226] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Ballesteros CAS, Mercante LA, Alvarenga AD, Facure MHM, Schneider R, Correa DS. Recent trends in nanozymes design: from materials and structures to environmental applications. Mater Chem Front 2021;5:7419-51. [DOI: 10.1039/d1qm00947h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
3 Qu R, Suo H, Gu Y, Weng Y, Qin Y. Sidechain Metallopolymers with Precisely Controlled Structures: Synthesis and Application in Catalysis. Polymers 2022;14:1128. [DOI: 10.3390/polym14061128] [Reference Citation Analysis]
4 Luo S, Chen X, He Y, Gu Y, Zhu C, Yang GH, Qu LL. Recent advances in graphene nanoribbons for biosensing and biomedicine. J Mater Chem B 2021;9:6129-43. [PMID: 34291262 DOI: 10.1039/d1tb00871d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Maddheshiya S, Nara S. Recent Trends in Composite Nanozymes and Their Pro-Oxidative Role in Therapeutics. Front Bioeng Biotechnol 2022;10:880214. [PMID: 35711631 DOI: 10.3389/fbioe.2022.880214] [Reference Citation Analysis]
6 Li S, Ding H, Chang J, Dong S, Shao B, Dong Y, Gai S, He F, Yang P. Bimetallic oxide nanozyme-mediated depletion of glutathione to boost oxidative stress for combined nanocatalytic therapy. Journal of Colloid and Interface Science 2022;623:787-98. [DOI: 10.1016/j.jcis.2022.05.059] [Reference Citation Analysis]
7 Fang Y, Wu W, Qin Y, Liu H, Lu K, Wang L, Zhang M. Recent development in antibacterial activity and application of nanozymes in food preservation. Crit Rev Food Sci Nutr 2022;:1-19. [PMID: 35452320 DOI: 10.1080/10408398.2022.2065660] [Reference Citation Analysis]
8 Padmakumari Kurup C, Abdullah Lim S, Ahmed MU. Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors. Bioelectrochemistry 2022;147:108170. [DOI: 10.1016/j.bioelechem.2022.108170] [Reference Citation Analysis]
9 Lopez-Cantu DO, González-González RB, Melchor-Martínez EM, Martínez SAH, Araújo RG, Parra-Arroyo L, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Enzyme-mimicking capacities of carbon-dots nanozymes: Properties, catalytic mechanism, and applications - A review. Int J Biol Macromol 2022;194:676-87. [PMID: 34813781 DOI: 10.1016/j.ijbiomac.2021.11.112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
10 Chong Y, Ning J, Min S, Ye J, Ge C. Emerging nanozymes for potentiating radiotherapy and radiation protection. Chinese Chemical Letters 2022;33:3315-24. [DOI: 10.1016/j.cclet.2022.03.054] [Reference Citation Analysis]
11 Iranifam M, Toolooe Gardeh Rasht M, Al Lawati HAJ. CuS nanoparticles-enhanced luminol-O2 chemiluminescence reaction used for determination of paracetamol and vancomycin. Spectrochim Acta A Mol Biomol Spectrosc 2021;261:120038. [PMID: 34118521 DOI: 10.1016/j.saa.2021.120038] [Reference Citation Analysis]
12 Abedanzadeh S, Moosavi-movahedi Z, Sheibani N, Moosavi-movahedi AA. Nanozymes: Supramolecular perspective. Biochemical Engineering Journal 2022. [DOI: 10.1016/j.bej.2022.108463] [Reference Citation Analysis]
13 Zhao X, Yang T, Wang D, Zhang N, Yang H, Jing X, Niu R, Yang Z, Xie Y, Meng L. Gold Nanorods/Metal-Organic Framework Hybrids: Photo-Enhanced Peroxidase-Like Activity and SERS Performance for Organic Dyestuff Degradation and Detection. Anal Chem 2022. [PMID: 35235310 DOI: 10.1021/acs.analchem.2c00036] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Xie Y, Wang M, Sun Q, Wang D, Luo S, Li C. PtBi-β-CD-Ce6 Nanozyme for Combined Trimodal Imaging-Guided Photodynamic Therapy and NIR-II Responsive Photothermal Therapy. Inorg Chem 2022. [PMID: 35477242 DOI: 10.1021/acs.inorgchem.2c00168] [Reference Citation Analysis]
15 Chen C, Vázquez-González M, O'Hagan MP, Ouyang Y, Wang Z, Willner I. Enzyme-Loaded Hemin/G-Quadruplex-Modified ZIF-90 Metal-Organic Framework Nanoparticles: Bioreactor Nanozymes for the Cascaded Oxidation of N-hydroxy-l-arginine and Sensing Applications. Small 2022;:e2104420. [PMID: 35037383 DOI: 10.1002/smll.202104420] [Reference Citation Analysis]
16 Dang Y, Wang G, Su G, Lu Z, Wang Y, Liu T, Pu X, Wang X, Wu C, Song C, Zhao Q, Rao H, Sun M. Rational Construction of a Ni/CoMoO4 Heterostructure with Strong Ni-O-Co Bonds for Improving Multifunctional Nanozyme Activity. ACS Nano 2022;16:4536-50. [PMID: 35238531 DOI: 10.1021/acsnano.1c11012] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 He Y, Jin X, Guo S, Zhao H, Liu Y, Ju H. Conjugated Polymer-Ferrocence Nanoparticle as an NIR-II Light Powered Nanoamplifier to Enhance Chemodynamic Therapy. ACS Appl Mater Interfaces 2021;13:31452-61. [PMID: 34197086 DOI: 10.1021/acsami.1c06613] [Reference Citation Analysis]
18 Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022;304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Reference Citation Analysis]
19 Yan LX, Wang BB, Zhao X, Chen LJ, Yan XP. A pH-Responsive Persistent Luminescence Nanozyme for Selective Imaging and Killing of Helicobacter pylori and Common Resistant Bacteria. ACS Appl Mater Interfaces 2021;13:60955-65. [PMID: 34904434 DOI: 10.1021/acsami.1c21318] [Reference Citation Analysis]
20 Naveen Prasad S, Bansal V, Ramanathan R. Detection of pesticides using nanozymes: Trends, challenges and outlook. TrAC Trends in Analytical Chemistry 2021;144:116429. [DOI: 10.1016/j.trac.2021.116429] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Razlivina J, Serov N, Shapovalova O, Vinogradov V. DiZyme: Open-Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity. Small 2022;:e2105673. [PMID: 35032097 DOI: 10.1002/smll.202105673] [Reference Citation Analysis]
22 Zhang X, Li G, Chen G, Wu D, Wu Y, James TD. Enzyme Mimics for Engineered Biomimetic Cascade Nanoreactors: Mechanism, Applications, and Prospects. Adv Funct Mater 2021;31:2106139. [DOI: 10.1002/adfm.202106139] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
23 Zhu D, Zhang M, Pu L, Gai P, Li F. Nitrogen-Enriched Conjugated Polymer Enabled Metal-Free Carbon Nanozymes with Efficient Oxidase-Like Activity. Small 2021;:e2104993. [PMID: 34837456 DOI: 10.1002/smll.202104993] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Ying M, Yang G, Xu Y, Ye H, Lin X, Lu Y, Pan H, Bai Y, Du M. Copper fumarate with high-bifunctional nanozyme activities at different pH values for glucose and epinephrine colorimetric detection in human serum. Analyst 2021;147:40-7. [PMID: 34816839 DOI: 10.1039/d1an01817e] [Reference Citation Analysis]
25 Zou Y, Chai Q, Zhu T, Yu X, Mao G, Li N, Chen J, Lai G. Simultaneously colorimetric detection and effective removal of mercury ion based on facile preparation of novel and green enzyme mimic. Spectrochim Acta A Mol Biomol Spectrosc 2022;266:120410. [PMID: 34601367 DOI: 10.1016/j.saa.2021.120410] [Reference Citation Analysis]
26 Xu M, Wang Y, Cai Y, Zhang X, Wang Y, Sha J. A sensitive colorimetric sensor for glutathione on the basis of the oxidase-like activity of polyoxometalate-based helical compound and its nanocomposite with SWNT-COOH. Inorganic Chemistry Communications 2022;137:109212. [DOI: 10.1016/j.inoche.2022.109212] [Reference Citation Analysis]
27 Song L, Chen J, Xu BB, Huang Y. Flexible Plasmonic Biosensors for Healthcare Monitoring: Progress and Prospects. ACS Nano 2021;15:18822-47. [PMID: 34841852 DOI: 10.1021/acsnano.1c07176] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
28 Pan MM, Ouyang Y, Song YL, Si LQ, Jiang M, Yu X, Xu L, Willner I. Au3+ -Functionalized UiO-67 Metal-Organic Framework Nanoparticles: O2 •- and •OH Generating Nanozymes and Their Antibacterial Functions. Small 2022;:e2200548. [PMID: 35460191 DOI: 10.1002/smll.202200548] [Reference Citation Analysis]
29 Bonet-aleta J, Garcia-peiro JI, Irusta S, Hueso JL. Gold-Platinum Nanoparticles with Core-Shell Configuration as Efficient Oxidase-like Nanosensors for Glutathione Detection. Nanomaterials 2022;12:755. [DOI: 10.3390/nano12050755] [Reference Citation Analysis]