BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moradi Kashkooli F, Soltani M, Souri M, Meaney C, Kohandel M. Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today 2021;36:101057. [DOI: 10.1016/j.nantod.2020.101057] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Souri M, Kiani Shahvandi M, Chiani M, Moradi Kashkooli F, Farhangi A, Mehrabi MR, Rahmim A, Savage VM, Soltani M. Stimuli-sensitive nano-drug delivery with programmable size changes to enhance accumulation of therapeutic agents in tumors. Drug Deliv 2023;30:2186312. [PMID: 36895188 DOI: 10.1080/10717544.2023.2186312] [Reference Citation Analysis]
2 Valentim CA, Rabi JA, David SA. Cellular-automaton model for tumor growth dynamics: Virtualization of different scenarios. Comput Biol Med 2023;153:106481. [PMID: 36587567 DOI: 10.1016/j.compbiomed.2022.106481] [Reference Citation Analysis]
3 Mehrabi MR, Soltani M, Chiani M, Raahemifar K, Farhangi A. Nanomedicine: New Frontiers in Fighting Microbial Infections. Nanomaterials (Basel) 2023;13. [PMID: 36770443 DOI: 10.3390/nano13030483] [Reference Citation Analysis]
4 Hornsby TK, Kashkooli FM, Jakhmola A, Kolios MC, Tavakkoli JJ. Multiphysics Modeling of Low-Intensity Pulsed Ultrasound Induced Chemotherapeutic Drug Release from the Surface of Gold Nanoparticles. Cancers (Basel) 2023;15. [PMID: 36672471 DOI: 10.3390/cancers15020523] [Reference Citation Analysis]
5 Abazari MA, Soltani M, Kashkooli FM. Targeted nano-sized drug delivery to heterogeneous solid tumor microvasculatures: Implications for immunoliposomes exhibiting bystander killing effect. Physics of Fluids 2023;35:011905. [DOI: 10.1063/5.0130259] [Reference Citation Analysis]
6 Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J Nanopart Res 2023;25:43. [PMID: 36875184 DOI: 10.1007/s11051-023-05690-w] [Reference Citation Analysis]
7 Das CGA, Kumar VG, Dhas TS, Karthick V, Kumar CMV. Nanomaterials in anticancer applications and their mechanism of action - A review. Nanomedicine 2023;47:102613. [PMID: 36252911 DOI: 10.1016/j.nano.2022.102613] [Reference Citation Analysis]
8 Zare Harofte S, Soltani M, Siavashy S, Raahemifar K. Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment. Small 2022;:e2203169. [PMID: 36026569 DOI: 10.1002/smll.202203169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Siavashy S, Soltani M, Ahmadi M, Landi B, Mehmanparast H, Ghorbani‐bidkorbeh F. A Comprehensive Review of One Decade of Microfluidic Platforms Applications in Synthesis of Enhanced Carriers Utilized in Controlled Drug Delivery. Adv Materials Technologies. [DOI: 10.1002/admt.202101615] [Reference Citation Analysis]
10 Idumah CI. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. Polymer-Plastics Technology and Materials 2022;61:1039-1070. [DOI: 10.1080/25740881.2022.2033769] [Reference Citation Analysis]
11 Kashkooli FM, Rezaeian M, Soltani M. Drug delivery through nanoparticles in solid tumors: a mechanistic understanding. Nanomedicine (Lond) 2022. [PMID: 35451315 DOI: 10.2217/nnm-2021-0126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Souri M, Moradi Kashkooli F, Soltani M. Analysis of Magneto-Hyperthermia Duration in Nano-sized Drug Delivery System to Solid Tumors Using Intravascular-Triggered Thermosensitive-Liposome. Pharm Res. [DOI: 10.1007/s11095-022-03255-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Jayasinghe MK, Lee CY, Tran TTT, Tan R, Chew SM, Yeo BZJ, Loh WX, Pirisinu M, Le MTN. The Role of in silico Research in Developing Nanoparticle-Based Therapeutics. Front Digit Health 2022;4:838590. [PMID: 35373184 DOI: 10.3389/fdgth.2022.838590] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Villa Nova M, Lin TP, Shanehsazzadeh S, Jain K, Ng SCY, Wacker R, Chichakly K, Wacker MG. Nanomedicine Ex Machina: Between Model-Informed Development and Artificial Intelligence. Front Digit Health 2022;4:799341. [DOI: 10.3389/fdgth.2022.799341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Jafari Nivlouei S, Soltani M, Shirani E, Salimpour MR, Travasso R, Carvalho J. A multiscale cell-based model of tumor growth for chemotherapy assessment and tumor-targeted therapy through a 3D computational approach. Cell Prolif 2022;:e13187. [PMID: 35132721 DOI: 10.1111/cpr.13187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv Drug Deliv Rev 2022;181:114083. [PMID: 34929251 DOI: 10.1016/j.addr.2021.114083] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 24.0] [Reference Citation Analysis]
17 Souri M, Soltani M, Kashkooli FM, Shahvandi MK, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
18 Ramos TI, Villacis-aguirre CA, López-aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker’s Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022;14:247. [DOI: 10.3390/pharmaceutics14020247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Stillman NR, Balaz I, Tsompanas M, Kovacevic M, Azimi S, Lafond S, Adamatzky A, Hauert S. Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment. npj Comput Mater 2021;7. [DOI: 10.1038/s41524-021-00614-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
20 Maleki R, Rezvantalab S, Shahbazi MA. Role of molecular simulation in the future of nanomedicine. Nanomedicine (Lond) 2021;16:2133-6. [PMID: 34519542 DOI: 10.2217/nnm-2021-0120] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Zhdanov VP. Kinetic aspects of virus targeting by nanoparticles in vivo. J Biol Phys 2021;47:95-101. [PMID: 34080098 DOI: 10.1007/s10867-021-09570-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Zhdanov VP. Virology from the perspective of theoretical colloid and interface science. Curr Opin Colloid Interface Sci 2021;53:101450. [PMID: 36568530 DOI: 10.1016/j.cocis.2021.101450] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Moradi Kashkooli F, Soltani M, Momeni MM. Computational modeling of drug delivery to solid tumors: A pilot study based on a real image. Journal of Drug Delivery Science and Technology 2021;62:102347. [DOI: 10.1016/j.jddst.2021.102347] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
24 Valentim CA, Rabi JA, David SA. Fractional Mathematical Oncology: On the potential of non-integer order calculus applied to interdisciplinary models. Biosystems 2021;204:104377. [PMID: 33610556 DOI: 10.1016/j.biosystems.2021.104377] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]