1 |
Tsolekile N, Parani S, Lebepe TC, Maluleke R, Ncapayi V, Matoetoe MC, Songca SP, Oluwafemi OS. Cell Viability Study of ZnCuInS/ZnS–TPPS4 Conjugates against Different Cell Lines as a Promising Fluorescent Probe. Organics 2023;4:126-136. [DOI: 10.3390/org4010010] [Reference Citation Analysis]
|
2 |
Yadav J, Singh M. Effect of heat treatment temperature on preparation and characterization of CuInSe2 thin films. J Mater Sci: Mater Electron 2023;34:692. [DOI: 10.1007/s10854-023-10111-8] [Reference Citation Analysis]
|
3 |
Fang Z, Huang Y, Zhang Y, ZHao F, Li F, ZHu Q, Jiang G. High selectivity and fluorescence reversible Eu(3+) sensor based on GSH-capped AgZnInS QDs. Opt Lett 2023;48:944-7. [PMID: 36790981 DOI: 10.1364/OL.479298] [Reference Citation Analysis]
|
4 |
Dubey V, Dubey N, Atri S, Kaur J, Dhoble SJ. Synthesis, characterization, and applications of luminescent semiconductor quantum dots. Quantum Dots 2023. [DOI: 10.1016/b978-0-323-85278-4.00020-9] [Reference Citation Analysis]
|
5 |
Bhunia P, Dutta K. Nanomaterials in organic oxidation reactions. Nanoparticles in Green Organic Synthesis 2023. [DOI: 10.1016/b978-0-323-95921-6.00012-3] [Reference Citation Analysis]
|
6 |
Jain S, Bharti S, Bhullar GK, Tripathi S. Synthesis, characterization and stability study of aqueous MPA capped CuInS2/ZnS core/shell nanoparticles. Journal of Luminescence 2022;252:119279. [DOI: 10.1016/j.jlumin.2022.119279] [Reference Citation Analysis]
|
7 |
Tsolekile N, Mngcutsha N, Vitshima N. Application of Quantum Dots in Lateral Flow Immunoassays: Non-Communicable and Communicable Diseases. Quantum Dots - Recent Advances, New Perspectives and Contemporary Applications [Working Title] 2022. [DOI: 10.5772/intechopen.107947] [Reference Citation Analysis]
|
8 |
Parani S, Oluwafemi OS. Synthesis, optical, structural and biocompatibility assessment of red-emitting CuInS2-ZnS quantum dots conjugated to folic acid. Nano-Structures & Nano-Objects 2022;32:100916. [DOI: 10.1016/j.nanoso.2022.100916] [Reference Citation Analysis]
|
9 |
Kosman R, Olejniczak A, Pawlyta M, Bezkrovnyi O, Cichy B. Spectroscopic and structural implications of hosting Zn2+, Cd2+ and Hg2+ ions in the AgInS2 quantum dots. Journal of Alloys and Compounds 2022;911:164977. [DOI: 10.1016/j.jallcom.2022.164977] [Reference Citation Analysis]
|
10 |
Sanmartín-matalobos J, Bermejo-barrera P, Aboal-somoza M, Fondo M, García-deibe AM, Corredoira-vázquez J, Alves-iglesias Y. Semiconductor Quantum Dots as Target Analytes: Properties, Surface Chemistry and Detection. Nanomaterials 2022;12:2501. [DOI: 10.3390/nano12142501] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
11 |
Aladesuyi OA, Lebepe TC, Maluleke R, Oluwafemi OS. Biological applications of ternary quantum dots: A review. Nanotechnology Reviews 2022;11:2304-19. [DOI: 10.1515/ntrev-2022-0136] [Reference Citation Analysis]
|
12 |
Olawale F, Oladimeji O, Ariatti M, Singh M, Vijayakumar S. Emerging Roles of Green-Synthesized Chalcogen and Chalcogenide Nanoparticles in Cancer Theranostics. Journal of Nanotechnology 2022;2022:1-18. [DOI: 10.1155/2022/6176610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Ponomaryova TS, Novikova AS, Sokolov AA, Goryacheva IY. Evaluation of the influence of buffer media on the colloidal stability of cadmium-free QDs stabilized with thioglycolic acid. Computational Biophysics and Nanobiophotonics 2022. [DOI: 10.1117/12.2625581] [Reference Citation Analysis]
|
14 |
Ponomaryova TS, Novikova AS, Abramova AM, Goryacheva OA, Drozd DD, Strokin PD, Goryacheva IY. New-Generation Low-Toxic I–III–VI2 Quantum Dots in Chemical Analysis. J Anal Chem 2022;77:402-9. [DOI: 10.1134/s1061934822040086] [Reference Citation Analysis]
|
15 |
Vitshima NA, Silwana B, Tsolekile N, Matoetoe MC. Effect of ZnS coating on the optoelectronic properties of aqueous glutathione capped AgInS quantum dots. Journal of Alloys and Compounds 2022;900:163386. [DOI: 10.1016/j.jallcom.2021.163386] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Rajendran JV, Parani S, Pillay R Remya V, Lebepe TC, Maluleke R, Thomas S, Oluwafemi OS. Selective and sensitive detection of Cu2+ ions in the midst of other metal ions using glutathione capped CuInS2/ZnS quantum dots. Physica E: Low-dimensional Systems and Nanostructures 2022;136:115026. [DOI: 10.1016/j.physe.2021.115026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Morselli G, Gradone A, Morandi V, Ceroni P. Light-harvesting antennae based on copper indium sulfide (CIS) quantum dots. Nanoscale. [DOI: 10.1039/d2nr00558a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
18 |
Yang W, Li X, Fei L, Liu W, Liu X, Xu H, Liu Y. A review on sustainable synthetic approaches toward photoluminescent quantum dots. Green Chem . [DOI: 10.1039/d1gc02964a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
19 |
May BM, Bambo MF, Hosseini SS, Sidwaba U, Nxumalo EN, Mishra AK. A review on I–III–VI ternary quantum dots for fluorescence detection of heavy metals ions in water: optical properties, synthesis and application. RSC Adv 2022;12:11216-32. [DOI: 10.1039/d1ra08660j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
20 |
Wonci Z, Tsolekile N, Matoetoe M. Polyvinylpyrrolidone as a polymer template for Cu In S quantum dots: Effect on optical properties. Materials Today: Proceedings 2022;56:1989-1994. [DOI: 10.1016/j.matpr.2021.11.330] [Reference Citation Analysis]
|
21 |
Kuna E, Pieta P, Nowakowski R, Pieta I. Semiconductor catalysts based on surface-modified nanomaterials (SMNs) for sensors. Surface Modified Nanomaterials for Applications in Catalysis 2022. [DOI: 10.1016/b978-0-12-823386-3.00004-0] [Reference Citation Analysis]
|
22 |
Zhang Y, Tong X, Channa AI, Wang R, Zhou N, Li X, Zhao H, Huang Y, Wang ZM. Effective surface passivation of environment-friendly colloidal quantum dots for highly efficient near-infrared photodetectors. J Mater Chem C 2022;10:7018-23. [DOI: 10.1039/d2tc00880g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Maluleke R, Oluwafemi OS. Synthetic Approaches, Modification Strategies and the Application of Quantum Dots in the Sensing of Priority Pollutants. Applied Sciences 2021;11:11580. [DOI: 10.3390/app112411580] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
24 |
Koryakina IG, Afonicheva PK, Arabuli KV, Evstrapov AA, Timin AS, Zyuzin MV. Microfluidic synthesis of optically responsive materials for nano- and biophotonics. Adv Colloid Interface Sci 2021;298:102548. [PMID: 34757247 DOI: 10.1016/j.cis.2021.102548] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
25 |
Wang J, Wang M, Guo J, Guo M, Yan Y. Preparation of AgInS2 quantum dots and their application for trypsin detection. J Mater Sci: Mater Electron 2021;32:26490-26502. [DOI: 10.1007/s10854-021-07026-7] [Reference Citation Analysis]
|
26 |
Morselli G, Villa M, Fermi A, Critchley K, Ceroni P. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. Nanoscale Horiz 2021;6:676-95. [PMID: 34264247 DOI: 10.1039/d1nh00260k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
27 |
Velásquez DA, Sousa FL, Soares TA, Caires AJ, Freitas DV, Navarro M, Machado G. Boosting the performance of TiO2 nanotubes with ecofriendly AgIn5Se8 quantum dots for photoelectrochemical hydrogen generation. Journal of Power Sources 2021;506:230165. [DOI: 10.1016/j.jpowsour.2021.230165] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
28 |
Chen T, Ren Y, Xu Y, Jiang W, Wang L, Jiang W, Xie Z. Room-temperature ionic-liquid-assisted hydrothermal synthesis of Ag-In-Zn-S quantum dots for WLEDs. Journal of Alloys and Compounds 2021;858:158084. [DOI: 10.1016/j.jallcom.2020.158084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
29 |
Zikalala N, Parani S, Oluwafemi OS. Synthesis of novel Zn-In-S/ZnS core/shell quantum dots: Temporal evolution and functionalization. Nano-Structures & Nano-Objects 2021;25:100673. [DOI: 10.1016/j.nanoso.2021.100673] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
30 |
Silva RR, Freitas DV, Sousa FL, Jesus AC, Silva SE, Mansur AA, Carvalho SM, Marques DS, Carvalho IC, Azevedo WM, Mansur HS, Navarro M. Synthesis of CuInS2 and CuInS2@ZnX (X = S, Se) nanoparticles for bioimaging of cancer cells using electrochemically generated S2- and Se2-. Journal of Alloys and Compounds 2021;853:156926. [DOI: 10.1016/j.jallcom.2020.156926] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
31 |
Oluwafemi OS, Sakho EHM, Parani S, Lebepe TC. Bioimaging and therapeutic applications of ternary quantum dots. Ternary Quantum Dots 2021. [DOI: 10.1016/b978-0-12-818303-8.00006-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
32 |
Oluwafemi OS, Sakho EHM, Parani S, Lebepe TC. Ternary quantum dots for sensing applications. Ternary Quantum Dots 2021. [DOI: 10.1016/b978-0-12-818303-8.00001-0] [Reference Citation Analysis]
|
33 |
Oluwafemi OS, Sakho EHM, Parani S, Lebepe TC. Fundamentals of quantum dot nanocrystals. Ternary Quantum Dots 2021. [DOI: 10.1016/b978-0-12-818303-8.00010-1] [Reference Citation Analysis]
|
34 |
Oluwafemi OS, Sakho EHM, Parani S, Lebepe TC. Cytotoxicity of ternary quantum dots. Ternary Quantum Dots 2021. [DOI: 10.1016/b978-0-12-818303-8.00011-3] [Reference Citation Analysis]
|
35 |
Tsolekile N, Parani S, Vuyelwa N, Maluleke R, Matoetoe M, Songca S, Oluwafemi OS. Synthesis, structural and fluorescence optimization of ternary Cu–In–S quantum dots passivated with ZnS. Journal of Luminescence 2020;227:117541. [DOI: 10.1016/j.jlumin.2020.117541] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
36 |
Aladesuyi OA, Oluwafemi OS. Synthesis strategies and application of ternary quantum dots — in cancer therapy. Nano-Structures & Nano-Objects 2020;24:100568. [DOI: 10.1016/j.nanoso.2020.100568] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
37 |
Liu Y, Li F, Huang H, Mao B, Liu Y, Kang Z. Optoelectronic and photocatalytic properties of I–III–VI QDs: Bridging between traditional and emerging new QDs. J Semicond 2020;41:091701. [DOI: 10.1088/1674-4926/41/9/091701] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
|
38 |
Jose Varghese R, Parani S, Adeyemi OO, Remya VR, Sakho EHM, Maluleke R, Thomas S, Oluwafemi OS. Green Synthesis of Sodium Alginate Capped -CuInS2 Quantum Dots with Improved Fluorescence Properties. J Fluoresc 2020;30:1331-5. [PMID: 32813189 DOI: 10.1007/s10895-020-02604-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
39 |
Parani S, Oluwafemi OS. Selective and sensitive fluorescent nanoprobe based on AgInS2-ZnS quantum dots for the rapid detection of Cr (III) ions in the midst of interfering ions. Nanotechnology 2020;31:395501. [PMID: 32531766 DOI: 10.1088/1361-6528/ab9c58] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
|
40 |
Razzaghi M, Kasiri-asgarani M, Bakhsheshi-rad HR, Ghayour H. Microstructure, mechanical properties, and in-vitro biocompatibility of nano- NiTi reinforced Mg–3Zn-0.5Ag alloy: Prepared by mechanical alloying for implant applications. Composites Part B: Engineering 2020;190:107947. [DOI: 10.1016/j.compositesb.2020.107947] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
|
41 |
Maluleke R, Sakho EHM, Oluwafemi OS. Aqueous synthesis of glutathione-capped CuInS2/ZnS quantum dots-graphene oxide nanocomposite as fluorescence “switch OFF” for explosive detection. Materials Letters 2020;269:127669. [DOI: 10.1016/j.matlet.2020.127669] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
42 |
Castro RC, Ribeiro DSM, Páscoa RNMJ, Soares JX, Mazivila SJ, Santos JLM. Dual-emission CdTe/AgInS2 photoluminescence probe coupled to neural network data processing for the simultaneous determination of folic acid and iron (II). Anal Chim Acta 2020;1114:29-41. [PMID: 32359512 DOI: 10.1016/j.aca.2020.04.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
43 |
Tsolekile N, Nahle S, Zikalala N, Parani S, Sakho EHM, Joubert O, Matoetoe MC, Songca SP, Oluwafemi OS. Cytotoxicity, fluorescence tagging and gene-expression study of CuInS/ZnS QDS - meso (hydroxyphenyl) porphyrin conjugate against human monocytic leukemia cells. Sci Rep 2020;10:4936. [PMID: 32188925 DOI: 10.1038/s41598-020-61881-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
|
44 |
Zikalala N, Parani S, Tsolekile N, Oluwafemi OS. Facile green synthesis of ZnInS quantum dots: temporal evolution of their optical properties and cell viability against normal and cancerous cells. J Mater Chem C 2020;8:9329-36. [DOI: 10.1039/d0tc02098b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
45 |
Dou R, Cheng H, Ma J, Komarneni S. Manganese doped magnetic cobalt ferrite nanoparticles for dye degradation via a novel heterogeneous chemical catalysis. Materials Chemistry and Physics 2020;240:122181. [DOI: 10.1016/j.matchemphys.2019.122181] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 11.0] [Reference Citation Analysis]
|
46 |
Jain S, Bharti S, Kaur G, Tripathi SK. Synthesis and characterization of copper indium sulphide ternary chalcopyrite nanoparticles. AIP Conference Proceedings 2020. [DOI: 10.1063/5.0001837] [Reference Citation Analysis]
|
47 |
Ca NX, Van HT, Do PV, Thanh LD, Tan PM, Truong NX, Oanh VTK, Binh NT, Hien NT. Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots. RSC Adv 2020;10:25618-28. [DOI: 10.1039/d0ra04257a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
48 |
Yang J, Lin ZZ, Huang ZY. Rapid detection of trace malachite green using a fluorescence probe based on signal amplification through electrostatic self-assembly of CdTe QDs and polystyrene microsphere. Mar Pollut Bull 2020;151:110812. [PMID: 32056604 DOI: 10.1016/j.marpolbul.2019.110812] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
49 |
Oluwafemi OS, May BMM, Parani S, Tsolekile N. Facile, large scale synthesis of water soluble AgInSe2/ZnSe quantum dots and its cell viability assessment on different cell lines. Mater Sci Eng C Mater Biol Appl 2020;106:110181. [PMID: 31753367 DOI: 10.1016/j.msec.2019.110181] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
|
50 |
Zhou J, Yuan K, Zhou L, Guo Y, Luo M, Guo X, Meng Q, Zhang Y. Boosting Electrochemical Reduction of CO 2 at a Low Overpotential by Amorphous Ag‐Bi‐S‐O Decorated Bi 0 Nanocrystals. Angew Chem 2019;131:14335-9. [DOI: 10.1002/ange.201908735] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
|
51 |
Zhou J, Yuan K, Zhou L, Guo Y, Luo M, Guo X, Meng Q, Zhang Y. Boosting Electrochemical Reduction of CO 2 at a Low Overpotential by Amorphous Ag‐Bi‐S‐O Decorated Bi 0 Nanocrystals. Angew Chem Int Ed 2019;58:14197-201. [DOI: 10.1002/anie.201908735] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 13.8] [Reference Citation Analysis]
|
52 |
Mahmoud HR, El-molla SA, Naghmash MA. Novel mesoporous MnO2/SnO2 nanomaterials synthesized by ultrasonic-assisted co-precipitation method and their application in the catalytic decomposition of hydrogen peroxide. Ultrasonics 2019;95:95-103. [DOI: 10.1016/j.ultras.2019.03.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
|
53 |
Ghanbari K, Roushani M, Soheyli E, Sahraei R. An electrochemical tyrosinamide aptasensor using a glassy carbon electrode modified by N-acetyl-l-cysteine-capped Ag-In-S QDs. Mater Sci Eng C Mater Biol Appl 2019;102:653-60. [PMID: 31147037 DOI: 10.1016/j.msec.2019.04.093] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
|
54 |
Tran TH, Pham TH, Sai CD, Nguyen TT, Nguyen VT. Study phase evolution of hydrothermally synthesized Cu2ZnSnS4 nanocrystals by Raman spectroscopy. Nano-Structures & Nano-Objects 2019;18:100273. [DOI: 10.1016/j.nanoso.2019.100273] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
55 |
Oluwafemi OS, May BMM, Parani S, Tsolekile N. Controlled, Facile Synthesis of High Aspect Ratio Silver Indium Selenide Nanorods. Journal of Elec Materi 2019;48:3423-7. [DOI: 10.1007/s11664-019-07154-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
56 |
May BM, Parani S, Oluwafemi OS. Detection of ascorbic acid using green synthesized AgInS2 quantum dots. Materials Letters 2019;236:432-5. [DOI: 10.1016/j.matlet.2018.10.155] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
|
57 |
Merchan-merchan W, Cuello Jimenez W, Rodriguez Coria O, Wallis C. Flame Synthesis of Nanostructured Transition Metal Oxides: Trends, Developments, and Recent Advances. Nanomaterials Synthesis 2019. [DOI: 10.1016/b978-0-12-815751-0.00007-9] [Reference Citation Analysis]
|
58 |
Oluwafemi OS, Ncapayi V, Parani S, Tsolekile N. Facile Synthesis and Characterization of CdSe/ZnSe Core/Shell and ZnxCd1−xSe Alloy Quantum Dots via Non-organometallic Route. J Clust Sci 2019;30:161-9. [DOI: 10.1007/s10876-018-1471-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
|
59 |
Chauhan SM, Chaki SH, Deshpande M, Tailor JP, Khimani AJ, Mangrola AV. Synthesis, characterization and antimicrobial study of wet chemical synthesized CuInSe nanoparticles. Nano-Structures & Nano-Objects 2018;16:200-8. [DOI: 10.1016/j.nanoso.2018.07.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
|
60 |
Ayodhya D, Veerabhadram G. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Materials Today Energy 2018;9:83-113. [DOI: 10.1016/j.mtener.2018.05.007] [Cited by in Crossref: 165] [Cited by in F6Publishing: 168] [Article Influence: 33.0] [Reference Citation Analysis]
|
61 |
Tsolekile N, Ncapayi V, Parani S, Sakho EHM, Matoetoe MC, Songca SP, Oluwafemi OS. Synthesis of fluorescent CulnS2/ZnS quantum dots—porphyrin conjugates for photodynamic therapy. MRS Communications 2018;8:398-403. [DOI: 10.1557/mrc.2018.60] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
|
62 |
Akbari A, Amini M, Tarassoli A, Eftekhari-sis B, Ghasemian N, Jabbari E. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures & Nano-Objects 2018;14:19-48. [DOI: 10.1016/j.nanoso.2018.01.006] [Cited by in Crossref: 87] [Cited by in F6Publishing: 91] [Article Influence: 17.4] [Reference Citation Analysis]
|
63 |
K.t. V, Belagali SL. Synthesis and characterization of Mn:ZnS quantum dots for photovoltaic applications. Nano-Structures & Nano-Objects 2018;14:118-24. [DOI: 10.1016/j.nanoso.2018.02.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
|