BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fotoran WL, Müntefering T, Kleiber N, Miranda BNM, Liebau E, Irvine DJ, Wunderlich G. A multilamellar nanoliposome stabilized by interlayer hydrogen bonds increases antimalarial drug efficacy. Nanomedicine 2019;22:102099. [PMID: 31648039 DOI: 10.1016/j.nano.2019.102099] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Donahue ND, Vance EA, Sheth V, Francek ER, Wilhelm S. Synthesis, Characterization, and Acute Cytotoxicity Evaluation of Chloroquine Encapsulating Liposomes. Micro 2023;3:51-59. [DOI: 10.3390/micro3010005] [Reference Citation Analysis]
2 Chaves JB, Portugal Tavares de Moraes B, Regina Ferrarini S, Noé da Fonseca F, Silva AR, Gonçalves-de-albuquerque CF. Potential of nanoformulations in malaria treatment. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.999300] [Reference Citation Analysis]
3 Rodrigues-jesus MJ, Teixeira de Pinho Favaro M, Venceslau-carvalho AA, de Castro-amarante MF, da Silva Almeida B, de Oliveira Silva M, Andreata-santos R, Gomes Barbosa C, Brito SCM, Freitas-junior LH, Boscardin SB, de Souza Ferreira LC. Nano-multilamellar lipid vesicles promote the induction of SARS-CoV-2 immune responses by a protein-based vaccine formulation. Nanomedicine: Nanotechnology, Biology and Medicine 2022;45:102595. [DOI: 10.1016/j.nano.2022.102595] [Reference Citation Analysis]
4 Monirinasab H, Zakariazadeh M, Kohestani H, Kouhestani M, Fathi F. Study of β-lactam-based drug interaction with albumin protein using optical, sensing, and docking methods. J Biol Phys. [DOI: 10.1007/s10867-021-09599-0] [Reference Citation Analysis]
5 Gopalan R, Sundarraj S, Anand K, Ilango S. Nanotechnology’s Promising Role in the Control of Mosquito-Borne Disease. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-030-80371-1_11] [Reference Citation Analysis]
6 Goscianska J, Freund R, Wuttke S. Nanoscience versus Viruses: The SARS‐CoV‐2 Case. Adv Funct Materials 2022;32:2107826. [DOI: 10.1002/adfm.202107826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Prata IO, Cubillos EFG, Krüger A, Barbosa D, Martins J Jr, Setubal JC, Wunderlich G. Plasmodium falciparum Acetyl-CoA Synthetase Is Essential for Parasite Intraerythrocytic Development and Chromatin Modification. ACS Infect Dis 2021;7:3224-40. [PMID: 34766750 DOI: 10.1021/acsinfecdis.1c00414] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
8 Venceslau-Carvalho AA, Teixeira de Pinho Favaro M, Ramos Pereira L, Rodrigues-Jesus MJ, Santos Pereira S, Andreata-Santos R, Dos Santos Alves RP, Castro-Amarante MF, Bitencourt Rodrigues K, Ramos da Silva J, Rahal Guaragna Machado R, Dos Passos Cunha M, Marinho de Andrade Zanotto P, Luzetti Fotoran W, Wunderlich G, Durigon EL, de Souza Ferreira LC. Nano-multilamellar lipid vesicles loaded with a recombinant form of the chikungunya virus E2 protein improve the induction of virus-neutralizing antibodies. Nanomedicine 2021;37:102445. [PMID: 34303841 DOI: 10.1016/j.nano.2021.102445] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Rashidzadeh H, Tabatabaei Rezaei SJ, Adyani SM, Abazari M, Rahamooz Haghighi S, Abdollahi H, Ramazani A. Recent advances in targeting malaria with nanotechnology-based drug carriers. Pharm Dev Technol 2021;26:807-23. [PMID: 34190000 DOI: 10.1080/10837450.2021.1948568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Prata IO, Galindo Cubillos EF, Barbosa D, Martins J, Setubal JC, Wunderlich G. Plasmodium falciparum Acetyl-CoA Synthetase is essential for parasite intraerythrocytic development and chromatin modification.. [DOI: 10.1101/2021.06.13.448207] [Reference Citation Analysis]
11 Yang KC, Lin JC, Tsai HH, Hsu CY, Shih V, Hu CJ. Nanotechnology advances in pathogen- and host-targeted antiviral delivery: multipronged therapeutic intervention for pandemic control. Drug Deliv Transl Res 2021;11:1420-37. [PMID: 33748879 DOI: 10.1007/s13346-021-00965-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
12 Stevens DM, Crist RM, Stern ST. Nanomedicine Reformulation of Chloroquine and Hydroxychloroquine. Molecules 2020;26:E175. [PMID: 33396545 DOI: 10.3390/molecules26010175] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther. 2020;214:107618. [PMID: 32592716 DOI: 10.1016/j.pharmthera.2020.107618] [Cited by in Crossref: 136] [Cited by in F6Publishing: 144] [Article Influence: 45.3] [Reference Citation Analysis]
14 Deda DK, Iglesias BA, Alves E, Araki K, Garcia CRS. Porphyrin Derivative Nanoformulations for Therapy and Antiparasitic Agents. Molecules 2020;25:E2080. [PMID: 32365664 DOI: 10.3390/molecules25092080] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
15 Li F, Fu X, Huo Q, Chen W. Research Progress on the Nano-Delivery Systems of Antitumor Drugs. Nano LIFE 2020;10:2040006. [DOI: 10.1142/s1793984420400061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]