BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Guan M, Zhou Y, Zhu QL, Liu Y, Bei YY, Zhang XN, Zhang Q. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy. Nanomedicine 2012;8:1172-81. [PMID: 22321383 DOI: 10.1016/j.nano.2012.01.009] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Franciane Gonçalves Barbosa H, Margarete Furuyama Lima A, Roberto Taboga S, Cesar Fernandes J, Aparecida de Oliveira Tiera V, José Tiera M. Synthesis and self-assembly study of zwitterionic amphiphilic derivatives of chitosan. J Appl Polym Sci 2016;133. [DOI: 10.1002/app.44176] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
2 Chi J, Jiang Z, Chen X, Peng Y, Liu W, Han B, Han B. Studies on anti-hepatocarcinoma effect, pharmacokinetics and tissue distribution of carboxymethyl chitosan based norcantharidin conjugates. Carbohydr Polym 2019;226:115297. [PMID: 31582090 DOI: 10.1016/j.carbpol.2019.115297] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
3 Xia L, Wang Y, Chen Y, Yan J, Hao F, Su X, Zhang C, Xu M. Cuprous oxide nanoparticles inhibit the growth of cervical carcinoma by inducing autophagy. Oncotarget 2017;8:61083-92. [PMID: 28977848 DOI: 10.18632/oncotarget.17854] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
4 Elzhry Elyafi AK, Standen G, Meikle ST, Lewis AL, Salvage JP. Development of MPC-DPA polymeric nanoparticle systems for inhalation drug delivery applications. European Journal of Pharmaceutical Sciences 2017;106:362-80. [DOI: 10.1016/j.ejps.2017.06.023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
5 Martins AF, Facchi SP, Monteiro JP, Nocchi SR, Silva CT, Nakamura CV, Girotto EM, Rubira AF, Muniz EC. Preparation and cytotoxicity of N,N,N-trimethyl chitosan/alginate beads containing gold nanoparticles. International Journal of Biological Macromolecules 2015;72:466-71. [DOI: 10.1016/j.ijbiomac.2014.08.020] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 5.6] [Reference Citation Analysis]
6 Zhao S, Tan S, Guo Y, Huang J, Chu M, Liu H, Zhang Z. pH-Sensitive Docetaxel-Loaded d -α-Tocopheryl Polyethylene Glycol Succinate–Poly(β-amino ester) Copolymer Nanoparticles for Overcoming Multidrug Resistance. Biomacromolecules 2013;14:2636-46. [DOI: 10.1021/bm4005113] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 7.0] [Reference Citation Analysis]
7 Zhu Q, Zhou Y, Guan M, Zhou X, Yang S, Liu Y, Chen W, Zhang C, Yuan Z, Liu C, Zhu A, Zhang X. Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy. Biomaterials 2014;35:5965-76. [DOI: 10.1016/j.biomaterials.2014.03.088] [Cited by in Crossref: 70] [Cited by in F6Publishing: 68] [Article Influence: 8.8] [Reference Citation Analysis]
8 Chen WL, Yang SD, Li F, Qu CX, Liu Y, Wang Y, Wang DD, Zhang XN. Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo. Acta Biomater 2018;81:219-30. [PMID: 30267887 DOI: 10.1016/j.actbio.2018.09.040] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
9 Mutlu Ağardan NB, Değim Z, Yilmaz Ş. Antitumoral and MMP-2 inhibition activity of raloxifene or tamoxifen loaded nanoparticles containing dimethyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 2014;80:31-6. [DOI: 10.1007/s10847-014-0395-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
10 Liang T, Guan R, Wang Z, Shen H, Xia Q, Liu M. Comparison of anticancer activity and antioxidant activity between cyanidin-3-O-glucoside liposomes and cyanidin-3-O-glucoside in Caco-2 cells in vitro. RSC Adv 2017;7:37359-68. [DOI: 10.1039/c7ra06387c] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
11 Chen WL, Yuan ZQ, Liu Y, Yang SD, Zhang CG, Li JZ, Zhu WJ, Li F, Zhou XF, Lin YM, Zhang XN. Liposomes coated with N-trimethyl chitosan to improve the absorption of harmine in vivo and in vitro. Int J Nanomedicine 2016;11:325-36. [PMID: 26855571 DOI: 10.2147/IJN.S95540] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
12 Kou CH, Han J, Han XL, Zhuang HJ, Zhao ZM. Preparation and characterization of the Adriamycin-loaded amphiphilic chitosan nanoparticles and their application in the treatment of liver cancer. Oncol Lett 2017;14:7833-41. [PMID: 29344229 DOI: 10.3892/ol.2017.7210] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
13 Zhu R, Zhang C, Liu Y, Yuan Z, Chen W, Yang S, Li J, Zhu W, Zhou X, You B, Zhang X. CD147 monoclonal antibody mediated by chitosan nanoparticles loaded with α-hederin enhances antineoplastic activity and cellular uptake in liver cancer cells. Sci Rep 2016;5. [DOI: 10.1038/srep17904] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
14 Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics 2021;13:1686. [PMID: 34683979 DOI: 10.3390/pharmaceutics13101686] [Reference Citation Analysis]
15 Bei YY, Yuan ZQ, Zhang L, Zhou XF, Chen WL, Xia P, Liu Y, You BG, Hu XJ, Zhu QL, Zhang CG, Zhang XN, Jin Y. Novel self-assembled micelles based on palmitoyl-trimethyl-chitosan for efficient delivery of harmine to liver cancer. Expert Opin Drug Deliv 2014;11:843-54. [PMID: 24655139 DOI: 10.1517/17425247.2014.893292] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
16 Ma J, Guan R, Shen H, Lu F, Xiao C, Liu M, Kang T. Comparison of anticancer activity between lactoferrin nanoliposome and lactoferrin in Caco-2 cells in vitro. Food and Chemical Toxicology 2013;59:72-7. [DOI: 10.1016/j.fct.2013.05.038] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
17 Gao B, Luo J, Liu Y, Su S, Fu S, Yang X, Li B. Intratumoral Administration of Thermosensitive Hydrogel Co-Loaded with Norcantharidin Nanoparticles and Doxorubicin for the Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 2021;16:4073-85. [PMID: 34163160 DOI: 10.2147/IJN.S308057] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Martins AF, Monteiro JP, Bonafé EG, Gerola AP, Silva CT, Girotto EM, Rubira AF, Muniz EC. Bactericidal activity of hydrogel beads based on N,N,N-trimethyl chitosan/alginate complexes loaded with silver nanoparticles. Chinese Chemical Letters 2015;26:1129-32. [DOI: 10.1016/j.cclet.2015.04.032] [Cited by in Crossref: 29] [Cited by in F6Publishing: 15] [Article Influence: 4.1] [Reference Citation Analysis]
19 De Munter S, Köhn M, Bollen M. Challenges and opportunities in the development of protein phosphatase-directed therapeutics. ACS Chem Biol 2013;8:36-45. [PMID: 23214403 DOI: 10.1021/cb300597g] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 8.8] [Reference Citation Analysis]
20 Li M, Xu X, Lu F, Guo S. Primary in vitro and in vivo evaluation of norcantharidin-chitosan/poly (vinyl alcohol) for cancer treatment. Drug Delivery 2013;21:293-301. [DOI: 10.3109/10717544.2013.840692] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
21 Xu X, Li Y, Shen Y, Guo S. Synthesis and in vitro cellular evaluation of novel anti-tumor norcantharidin-conjugated chitosan derivatives. International Journal of Biological Macromolecules 2013;62:418-25. [DOI: 10.1016/j.ijbiomac.2013.09.053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
22 Geisberger G, Gyenge EB, Maake C, Patzke GR. Trimethyl and carboxymethyl chitosan carriers for bio-active polymer-inorganic nanocomposites. Carbohydr Polym 2013;91:58-67. [PMID: 23044105 DOI: 10.1016/j.carbpol.2012.08.009] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
23 Yhee JY, Son S, Kim N, Choi K, Kwon IC. Theranostic applications of organic nanoparticles for cancer treatment. MRS Bull 2014;39:239-49. [DOI: 10.1557/mrs.2014.30] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
24 Jia L, Hao SL, Yang WX. Nanoparticles induce autophagy via mTOR pathway inhibition and reactive oxygen species generation. Nanomedicine (Lond) 2020;15:1419-35. [PMID: 32529946 DOI: 10.2217/nnm-2019-0387] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zhang CG, Zhu WJ, Liu Y, Yuan ZQ, Yang SD, Chen WL, Li JZ, Zhou XF, Liu C, Zhang XN. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci Rep 2016;6:23859. [PMID: 27030638 DOI: 10.1038/srep23859] [Cited by in Crossref: 69] [Cited by in F6Publishing: 67] [Article Influence: 11.5] [Reference Citation Analysis]
26 Yang S, Wang Y, Ren Z, Chen M, Chen W, Zhang X. Stepwise pH/reduction-responsive polymeric conjugates for enhanced drug delivery to tumor. Materials Science and Engineering: C 2018;82:234-43. [DOI: 10.1016/j.msec.2017.08.079] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
27 Xu X, Li Y, Wang F, Lv L, Liu J, Li M, Guo A, Jiang J, Shen Y, Guo S. Synthesis, in vitro and in vivo evaluation of new norcantharidin-conjugated hydroxypropyltrimethyl ammonium chloride chitosan derivatives as polymer therapeutics. International Journal of Pharmaceutics 2013;453:610-9. [DOI: 10.1016/j.ijpharm.2013.05.052] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
28 Wang Y, Yang F, Zhang HX, Zi XY, Pan XH, Chen F, Luo WD, Li JX, Zhu HY, Hu YP. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis 2013;4:e783. [PMID: 23990023 DOI: 10.1038/cddis.2013.314] [Cited by in Crossref: 84] [Cited by in F6Publishing: 70] [Article Influence: 9.3] [Reference Citation Analysis]
29 Elsheikh MA, Elnaggar YS, Abdallah OY. Rationale employment of cell culture versus conventional techniques in pharmaceutical appraisal of nanocarriers. Journal of Controlled Release 2014;194:92-102. [DOI: 10.1016/j.jconrel.2014.08.019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
30 Du L, Miao X, Gao Y, Jia H, Liu K, Liu Y. The protective effects of Trolox-loaded chitosan nanoparticles against hypoxia-mediated cell apoptosis. Nanomedicine: Nanotechnology, Biology and Medicine 2014;10:1411-20. [DOI: 10.1016/j.nano.2014.04.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
31 Ma J, Teng H, Wang J, Zhang Y, Ren T, Tang X, Cai C. A highly stable norcantharidin loaded lipid microspheres: Preparation, biodistribution and targeting evaluation. International Journal of Pharmaceutics 2014;473:475-84. [DOI: 10.1016/j.ijpharm.2014.07.047] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
32 Soares PI, Echeverria C, Baptista AC, João CF, Fernandes SN, Almeida AP, Silva JC, Godinho MH, Borges JP. Hybrid polysaccharide-based systems for biomedical applications. Hybrid Polymer Composite Materials. Elsevier; 2017. pp. 107-49. [DOI: 10.1016/b978-0-08-100785-3.00004-8] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
33 Usmani A, Mishra A, Ahmad M. Nanomedicines: a theranostic approach for hepatocellular carcinoma. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:680-90. [DOI: 10.1080/21691401.2017.1374282] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
34 Ghaz-jahanian MA, Abbaspour-aghdam F, Anarjan N, Berenjian A, Jafarizadeh-malmiri H. Application of Chitosan-Based Nanocarriers in Tumor-Targeted Drug Delivery. Mol Biotechnol 2015;57:201-18. [DOI: 10.1007/s12033-014-9816-3] [Cited by in Crossref: 76] [Cited by in F6Publishing: 58] [Article Influence: 9.5] [Reference Citation Analysis]
35 Jiang Y, Liu X, Tan X, Hou Y, Sun W, Gou J, Yin T, He H, Zhang Y, Tang X. In Vitro and In Vivo Evaluation of SP94 Modified Liposomes Loaded with N-14NCTDA, a Norcantharimide Derivative for Hepatocellular Carcinoma-Targeting. AAPS PharmSciTech 2020;21:277. [PMID: 33033942 DOI: 10.1208/s12249-020-01829-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, Crawford DHG, Xu ZP, Liu X, Roberts MS. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 2015;3:939-58. [PMID: 32261972 DOI: 10.1039/c4tb01611d] [Cited by in Crossref: 67] [Cited by in F6Publishing: 12] [Article Influence: 9.6] [Reference Citation Analysis]
37 Yadav KS, Srivastava N, Rai VK, Ranjana, Tandon S, Mina PR, Chanda D, Kalleti N, Rath SK, Darokar MP, Ajayakumar PV, Shanker K, Yadav NP. Cliv-92-Loaded Glycyrrhetinic Acid-Modified Chitosan Nanoparticles for Enhanced Hepatoprotection-Preparation, Characterization, and In Vivo Evaluation. AAPS PharmSciTech 2021;22:259. [PMID: 34704177 DOI: 10.1208/s12249-021-02130-7] [Reference Citation Analysis]
38 Zhou Y, Yu Q, Qin X, Bhavsar D, Yang L, Chen Q, Zheng W, Chen L, Liu J. Improving the Anticancer Efficacy of Laminin Receptor-Specific Therapeutic Ruthenium Nanoparticles (RuBB-Loaded EGCG-RuNPs) via ROS-Dependent Apoptosis in SMMC-7721 Cells. ACS Appl Mater Interfaces 2016;8:15000-12. [PMID: 26018505 DOI: 10.1021/acsami.5b02261] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
39 Kulkarni AD, Patel HM, Surana SJ, Vanjari YH, Belgamwar VS, Pardeshi CV. N,N,N-Trimethyl chitosan: An advanced polymer with myriad of opportunities in nanomedicine. Carbohydrate Polymers 2017;157:875-902. [DOI: 10.1016/j.carbpol.2016.10.041] [Cited by in Crossref: 70] [Cited by in F6Publishing: 58] [Article Influence: 14.0] [Reference Citation Analysis]
40 Bonferoni MC, Gavini E, Rassu G, Maestri M, Giunchedi P. Chitosan Nanoparticles for Therapy and Theranostics of Hepatocellular Carcinoma (HCC) and Liver-Targeting. Nanomaterials (Basel) 2020;10:E870. [PMID: 32365938 DOI: 10.3390/nano10050870] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
41 Deng Y, Zhang W, Li N, Lei X, Gong X, Zhang D, Wang L, Ye W. Cantharidin derivatives from the medicinal insect Mylabris phalerata. Tetrahedron 2017;73:5932-9. [DOI: 10.1016/j.tet.2017.08.034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
42 Tariverdian T, Navaei T, Milan PB, Samadikuchaksaraei A, Mozafari M. Functionalized polymers for tissue engineering and regenerative medicines. Advanced Functional Polymers for Biomedical Applications. Elsevier; 2019. pp. 323-57. [DOI: 10.1016/b978-0-12-816349-8.00016-3] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
43 Bhavsar C, Momin M, Gharat S, Omri A. Functionalized and graft copolymers of chitosan and its pharmaceutical applications. Expert Opinion on Drug Delivery 2017;14:1189-204. [DOI: 10.1080/17425247.2017.1241230] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
44 England CG, Priest T, Zhang G, Sun X, Patel DN, McNally LR, van Berkel V, Gobin AM, Frieboes HB. Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles. Int J Nanomedicine 2013;8:3603-17. [PMID: 24124360 DOI: 10.2147/IJN.S51668] [Cited by in Crossref: 4] [Cited by in F6Publishing: 20] [Article Influence: 0.4] [Reference Citation Analysis]
45 Zhang Z, Dai X. Preparation of alginate oligosaccharide nanoliposomes and an analysis of their inhibitory effects on Caco-2 cells. IET Nanobiotechnol 2018;12:946-50. [PMID: 30247135 DOI: 10.1049/iet-nbt.2017.0260] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 Du S, Li J, Du C, Huang Z, Chen G, Yan W. Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field. Oncotarget 2017;8:9410-24. [PMID: 28031531 DOI: 10.18632/oncotarget.14114] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
47 Ni J, Tian F, Dahmani FZ, Yang H, Yue D, He S, Zhou J, Yao J. Curcumin-carboxymethyl chitosan (CNC) conjugate and CNC/LHR mixed polymeric micelles as new approaches to improve the oral absorption of P-gp substrate drugs. Drug Deliv 2016;23:3424-35. [PMID: 27198856 DOI: 10.1080/10717544.2016.1189625] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
48 Bei YY, Zhou XF, You BG, Yuan ZQ, Chen WL, Xia P, Liu Y, Jin Y, Hu XJ, Zhu QL, Zhang CG, Zhang XN, Zhang L. Application of the central composite design to optimize the preparation of novel micelles of harmine. Int J Nanomedicine 2013;8:1795-808. [PMID: 23674893 DOI: 10.2147/IJN.S43555] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
49 Xiong Q, Liu A, Ren Q, Xue Y, Yu X, Ying Y, Gao H, Tan H, Zhang Z, Li W, Zeng S, Xu C. Cuprous oxide nanoparticles trigger reactive oxygen species-induced apoptosis through activation of erk-dependent autophagy in bladder cancer. Cell Death Dis 2020;11:366. [PMID: 32409654 DOI: 10.1038/s41419-020-2554-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
50 Zhang CG, Yang SD, Zhu WJ, You BG, Liu Y, Yuan ZQ, Chen WL, Li JZ, Zhou XF, Liu C, Zhang XN. Distinctive polymer micelle designed for siRNA delivery and reversal of MDR1 gene-dependent multidrug resistance. J Biomed Mater Res B Appl Biomater 2017;105:2093-106. [PMID: 27405391 DOI: 10.1002/jbm.b.33748] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
51 Cheng M, He B, Wan T, Zhu W, Han J, Zha B, Chen H, Yang F, Li Q, Wang W, Xu H, Ye T. 5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model. PLoS One 2012;7:e47115. [PMID: 23077553 DOI: 10.1371/journal.pone.0047115] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 3.6] [Reference Citation Analysis]
52 Yin Y, Dang Q, Liu C, Yan J, Cha D, Yu Z, Cao Y, Wang Y, Fan B. Itaconic acid grafted carboxymethyl chitosan and its nanoparticles: Preparation, characterization and evaluation. International Journal of Biological Macromolecules 2017;102:10-8. [DOI: 10.1016/j.ijbiomac.2017.04.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
53 Chi J, Jiang Z, Qiao J, Peng Y, Liu W, Han B. Synthesis and anti-metastasis activities of norcantharidin-conjugated carboxymethyl chitosan as a novel drug delivery system. Carbohydrate Polymers 2019;214:80-9. [DOI: 10.1016/j.carbpol.2019.03.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]