BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lu C, Xing MM, Zhong W. Shell cross-linked and hepatocyte-targeting nanoparticles containing doxorubicin via acid-cleavable linkage. Nanomedicine 2011;7:80-7. [PMID: 20650334 DOI: 10.1016/j.nano.2010.07.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Taheri A, Dinarvand R, Atyabi F, Ghahremani MH, Ostad SN. Trastuzumab decorated methotrexate–human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumor cells. European Journal of Pharmaceutical Sciences 2012;47:331-40. [DOI: 10.1016/j.ejps.2012.06.016] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
2 Liu S, Ko AC, Li W, Zhong W, Xing M. NIR initiated and pH sensitive single-wall carbon nanotubes for doxorubicin intracellular delivery. J Mater Chem B 2014;2:1125. [DOI: 10.1039/c3tb21362e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
3 Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021;14:41. [PMID: 35056937 DOI: 10.3390/pharmaceutics14010041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Pranatharthiharan S, Patel MD, Malshe VC, Pujari V, Gorakshakar A, Madkaikar M, Ghosh K, Devarajan PV. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv 2017;24:20-9. [PMID: 28155331 DOI: 10.1080/10717544.2016.1225856] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 8.6] [Reference Citation Analysis]
5 Li Y, Xiao W, Xiao K, Berti L, Luo J, Tseng HP, Fung G, Lam KS. Well-Defined, Reversible Boronate Crosslinked Nanocarriers for Targeted Drug Delivery in Response to Acidic pH Values and cis -Diols. Angew Chem 2012;124:2918-23. [DOI: 10.1002/ange.201107144] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 6.1] [Reference Citation Analysis]
6 Li Y, Xiao K, Zhu W, Deng W, Lam KS. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv Drug Deliv Rev 2014;66:58-73. [PMID: 24060922 DOI: 10.1016/j.addr.2013.09.008] [Cited by in Crossref: 226] [Cited by in F6Publishing: 198] [Article Influence: 28.3] [Reference Citation Analysis]
7 Lou S, Zhang X, Zhang M, Ji S, Wang W, Zhang J, Li C, Kong D. Preparation of a dual cored hepatoma-specific star glycopolymer nanogel via arm-first ATRP approach. Int J Nanomedicine 2017;12:3653-64. [PMID: 28553105 DOI: 10.2147/IJN.S134367] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
8 Wang Y, Qin F, Lu M, Gao L, Yao X. The screening and evaluating of chitosan/β-cyclodextrin nanoparticles for effective delivery mitoxantrone hydrochloride. Polym Sci Ser A 2017;59:376-83. [DOI: 10.1134/s0965545x17030191] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang Y, Qin F, Tan H, Zhang Y, Jiang M, Lu M, Yao X. pH-responsive glycol chitosan-cross-linked carboxymethyl-β-cyclodextrin nanoparticles for controlled release of anticancer drugs. Int J Nanomedicine 2015;10:7359-69. [PMID: 26677325 DOI: 10.2147/IJN.S91906] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
10 Wang H, Wan G, Liu Y, Chen B, Chen H, Zhang S, Wang D, Xiong Q, Zhang N, Wang Y. Dual-responsive nanoparticles based on oxidized pullulan and a disulfide-containing poly(β-amino) ester for efficient delivery of genes and chemotherapeutic agents targeting hepatoma. Polym Chem 2016;7:6340-53. [DOI: 10.1039/c6py01664b] [Cited by in Crossref: 23] [Article Influence: 3.8] [Reference Citation Analysis]
11 Chen J, Qiu X, Ouyang J, Kong J, Zhong W, Xing MM. pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery. Biomacromolecules 2011;12:3601-11. [PMID: 21853982 DOI: 10.1021/bm200804j] [Cited by in Crossref: 213] [Cited by in F6Publishing: 195] [Article Influence: 19.4] [Reference Citation Analysis]
12 Liu HY, Qiao Z, Mao XX, Zha JC, Yin J. Phenylboronic Acid-Dopamine Dynamic Covalent Bond Involved Dual-Responsive Polymeric Complex: Construction and Anticancer Investigation. Langmuir 2019;35:11850-8. [PMID: 31423793 DOI: 10.1021/acs.langmuir.9b02194] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
13 Sahoo S, Ghosh P, Banerjee S, De P. Recent Advances in Biomedical Applications of Cholic Acid-Based Macromolecules. ACS Appl Polym Mater 2021;3:1687-706. [DOI: 10.1021/acsapm.0c01435] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
14 Grazú V, Moros M, Sánchez-espinel C. Nanocarriers as Nanomedicines. Nanobiotechnology - Inorganic Nanoparticles vs Organic Nanoparticles. Elsevier; 2012. pp. 337-440. [DOI: 10.1016/b978-0-12-415769-9.00014-5] [Cited by in Crossref: 10] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ma H, Liu Y, Shi M, Shao X, Zhong W, Liao W, Xing MMQ. Theranostic, pH-Responsive, Doxorubicin-Loaded Nanoparticles Inducing Active Targeting and Apoptosis for Advanced Gastric Cancer. Biomacromolecules 2015;16:4022-31. [DOI: 10.1021/acs.biomac.5b01039] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
16 Lu C, Zhong W. Synthesis of Propargyl-Terminated Heterobifunctional Poly(ethylene glycol). Polymers 2010;2:407-17. [DOI: 10.3390/polym2040407] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
17 Li Y, He H, Jia X, Lu W, Lou J, Wei Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials 2012;33:3899-908. [DOI: 10.1016/j.biomaterials.2012.02.004] [Cited by in Crossref: 215] [Cited by in F6Publishing: 201] [Article Influence: 21.5] [Reference Citation Analysis]
18 Chen J, Shi M, Liu P, Ko A, Zhong W, Liao W, Xing MM. Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery. Biomaterials 2014;35:1240-8. [DOI: 10.1016/j.biomaterials.2013.10.057] [Cited by in Crossref: 63] [Cited by in F6Publishing: 54] [Article Influence: 7.9] [Reference Citation Analysis]
19 Jia X, Zhao X, Tian K, Zhou T, Li J, Zhang R, Liu P. Novel fluorescent pH/reduction dual stimuli-responsive polymeric nanoparticles for intracellular triggered anticancer drug release. Chemical Engineering Journal 2016;295:468-76. [DOI: 10.1016/j.cej.2016.03.065] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
20 Wiwatchaitawee K, Quarterman JC, Geary SM, Salem AK. Enhancement of Therapies for Glioblastoma (GBM) Using Nanoparticle-based Delivery Systems. AAPS PharmSciTech 2021;22:71. [PMID: 33575970 DOI: 10.1208/s12249-021-01928-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
21 Chen J, Ouyang J, Kong J, Zhong W, Xing MM. Photo-cross-linked and pH-Sensitive Biodegradable Micelles for Doxorubicin Delivery. ACS Appl Mater Interfaces 2013;5:3108-17. [DOI: 10.1021/am400017q] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
22 Kim Y, Pourgholami MH, Morris DL, Stenzel MH. Triggering the fast release of drugs from crosslinked micelles in an acidic environment. J Mater Chem 2011;21:12777. [DOI: 10.1039/c1jm11062d] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
23 Luo Y, Han M, Xu F, Chen Y, Zhang Y. pH-Responsive H-Type PMAA 2 - b -HTPBN- b -PMAA 2 Four-Arm Star Block Copolymer Micelles for PTX Drug Release: pH-Responsive H-Type Block Copolymer Micelles. Macromol Biosci 2015;15:1411-22. [DOI: 10.1002/mabi.201500103] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
24 Chen J, Zehtabi F, Ouyang J, Kong J, Zhong W, Xing MMQ. Reducible self-assembled micelles for enhanced intracellular delivery of doxorubicin. J Mater Chem 2012;22:7121. [DOI: 10.1039/c2jm15277k] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
25 Cui YN, Xu QX, Davoodi P, Wang DP, Wang CH. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin. Acta Pharmacol Sin 2017;38:943-53. [PMID: 28552909 DOI: 10.1038/aps.2017.45] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 7.4] [Reference Citation Analysis]
26 Zhao X, Yao Y, Tian K, Zhou T, Jia X, Li J, Liu P. Leakage-free DOX/PEGylated chitosan micelles fabricated via facile one-step assembly for tumor intracellular pH-triggered release. European Journal of Pharmaceutics and Biopharmaceutics 2016;108:91-9. [DOI: 10.1016/j.ejpb.2016.08.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
27 Li H, Bian S, Huang Y, Liang J, Fan Y, Zhang X. High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting: pH-Sensitive Pullulan-DOX Conjugate Nanoparticles for Hepatic Targeting. J Biomed Mater Res 2014;102:150-9. [DOI: 10.1002/jbm.a.34680] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 6.4] [Reference Citation Analysis]
28 Shao Y, Huang W, Shi C, Atkinson ST, Luo J. Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment. Ther Deliv 2012;3:1409-27. [PMID: 23323559 DOI: 10.4155/tde.12.106] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
29 Karimi AR, Khodadadi A, Hadizadeh M. A nanoporous photosensitizing hydrogel based on chitosan cross-linked by zinc phthalocyanine: an injectable and pH-stimuli responsive system for effective cancer therapy. RSC Adv 2016;6:91445-52. [DOI: 10.1039/c6ra17064a] [Cited by in Crossref: 29] [Article Influence: 4.8] [Reference Citation Analysis]
30 Tian Y, Glogowska A, Zhong W, Klonisch T, Xing M. Polymeric mesoporous silica nanoparticles as a pH-responsive switch to control doxorubicin intracellular delivery. J Mater Chem B 2013;1:5264. [DOI: 10.1039/c3tb20544d] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
31 Chen H, Chen Y, Yang H, Xu W, Zhang M, Ma Y, Achilefu S, Gu Y. A dual-targeting nanocarrier based on modified chitosan micelles for tumor imaging and therapy. Polym Chem 2014;5:4734. [DOI: 10.1039/c4py00495g] [Cited by in Crossref: 10] [Article Influence: 1.3] [Reference Citation Analysis]
32 Shi J, Guobao W, Chen H, Zhong W, Qiu X, Xing MMQ. Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment. Polym Chem 2014;5:6180-9. [DOI: 10.1039/c4py00631c] [Cited by in Crossref: 76] [Cited by in F6Publishing: 2] [Article Influence: 9.5] [Reference Citation Analysis]
33 Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, Derakhshani Z. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 2015;22:145-55. [PMID: 24547737 DOI: 10.3109/10717544.2014.887157] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 8.6] [Reference Citation Analysis]