BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu R, Rong G, Liu Y, Huang W, He D, Lu R. Delivery of apigenin-loaded magnetic Fe2O3/Fe3O4@mSiO2 nanocomposites to A549 cells and their antitumor mechanism. Mater Sci Eng C Mater Biol Appl 2021;120:111719. [PMID: 33545870 DOI: 10.1016/j.msec.2020.111719] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Dong L, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. A review on recent advances in the applications of composite Fe3O4 magnetic nanoparticles in the food industry. Crit Rev Food Sci Nutr 2022;:1-29. [PMID: 36004607 DOI: 10.1080/10408398.2022.2113363] [Reference Citation Analysis]
2 Li Q, Gao W, Zhang C, Wang P, Wang X, Yan M, Jiang W, Wu Z, Wei P, Tian G, Zhang G. A Biodegradable High-Efficiency Magnetic Nanoliposome Promotes Tumor Microenvironment-Responsive Multimodal Tumor Therapy Along with Switchable T2 Magnetic Resonance Imaging. ACS Appl Mater Interfaces 2022;14:24160-73. [PMID: 35583352 DOI: 10.1021/acsami.2c04158] [Reference Citation Analysis]
3 Jang JY, Sung B, Kim ND. Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int J Mol Sci 2022;23:3757. [PMID: 35409117 DOI: 10.3390/ijms23073757] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
4 Ouyang H, Liu S, Liu D, Wang Y, Xu S, Pan S. Fabrication of magnetic cobalt-nickel ferrite nanoparticles for the adsorption of methyl blue in aqueous solutions. Mater Res Express 2021;8:105013. [DOI: 10.1088/2053-1591/ac3106] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zaffaroni N, Beretta GL. Nanoparticles for Ferroptosis Therapy in Cancer. Pharmaceutics 2021;13:1785. [PMID: 34834199 DOI: 10.3390/pharmaceutics13111785] [Reference Citation Analysis]
6 Kiani Nejad Z, Mirzaei-kalar Z, Khandar AA. Synthesis of ZnFe2O4@SiO2 nanoparticles as a pH-sensitive drug release system and good nano carrier for CT-DNA binding. Journal of Molecular Liquids 2021;339:117155. [DOI: 10.1016/j.molliq.2021.117155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Qi Y, Wang C, Qian R, Chen M, Jiang P, Wang T, Wang N. Loading drugs into liposomes by temperature up-down cycle procedure with controllable results fitting prediction by mathematical and thermodynamic process. Mater Sci Eng C Mater Biol Appl 2021;129:112379. [PMID: 34579898 DOI: 10.1016/j.msec.2021.112379] [Reference Citation Analysis]
8 Ji Y, Song S, Li X, Lv R, Wu L, Wang H, Cao M. Facile fabrication of nanocarriers with yolk-shell mesoporous silica nanoparticles for effective drug delivery. Journal of Drug Delivery Science and Technology 2021;63:102531. [DOI: 10.1016/j.jddst.2021.102531] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, Sova M, Kristl J, Saso L. Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2021;10:685. [PMID: 33925605 DOI: 10.3390/antiox10050685] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Liu Y, Si Y, Di M, Tang D, Meng L, Cui B. A novel microwave stimulus remote-controlled anticancer drug release system based on Janus TiO2-x&mSiO2 nanocarriers. Mater Sci Eng C Mater Biol Appl 2021;123:111968. [PMID: 33812596 DOI: 10.1016/j.msec.2021.111968] [Reference Citation Analysis]