BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zheng F, Li R, He Q, Koral K, Tao J, Fan L, Xiang R, Ma J, Wang N, Yin Y, Huang Z, Xu P, Xu H. The electrostimulation and scar inhibition effect of chitosan/oxidized hydroxyethyl cellulose/reduced graphene oxide/asiaticoside liposome based hydrogel on peripheral nerve regeneration in vitro. Mater Sci Eng C Mater Biol Appl 2020;109:110560. [PMID: 32228996 DOI: 10.1016/j.msec.2019.110560] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Ye H, Chen J, Li Y, Yang J, Hsu C, Cao T. A hyaluronic acid granular hydrogel nerve guidance conduit promotes regeneration and functional recovery of injured sciatic nerves in rats. Neural Regen Res 2023;18:657. [DOI: 10.4103/1673-5374.350212] [Reference Citation Analysis]
2 Bazghaleh AA, Dogolsar MA, Barzin J. Preparation and characterization of oxidized pectin/N-succinyl chitosan/graphene oxide hydrogels. Cellulose 2022. [DOI: 10.1007/s10570-022-05015-5] [Reference Citation Analysis]
3 Yu Y, Shen H, Wang X, Gibril ME, Kong F, Wang S. Spherical nanoparticle-modified bacterial cellulose drives SH−SY5Y cell differentiation and inhibits bacterial proliferation. Process Biochemistry 2022;122:307-315. [DOI: 10.1016/j.procbio.2022.10.015] [Reference Citation Analysis]
4 Nauman Javed RM, Al-othman A, Tawalbeh M, Olabi AG. Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications. Renewable and Sustainable Energy Reviews 2022;168:112836. [DOI: 10.1016/j.rser.2022.112836] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
5 Geng H, Qin M, Li J. A facile approach to cellulose/multi-walled carbon nanotube gels-Structure, formation process and adsorption to methylene blue. Int J Biol Macromol 2022;217:417-27. [PMID: 35841958 DOI: 10.1016/j.ijbiomac.2022.07.076] [Reference Citation Analysis]
6 Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. Applications of Chitosan in Surgical and Post-Surgical Materials. Mar Drugs 2022;20:396. [PMID: 35736199 DOI: 10.3390/md20060396] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wang P, Wang Y, Yi Y, Gong Y, Ji H, Gan Y, Xie F, Fan J, Wang X. MXenes-integrated microneedle combined with asiaticoside to penetrate the cuticle for treatment of diabetic foot ulcer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01468-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Progress in Polymer Science 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Reference Citation Analysis]
9 Jin Y, Zhang W, Zhang Y, Yang Y, Fang Z, Song J, Qian Y, Yuan WE. Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. Biomater Adv 2022;135:212727. [PMID: 35929199 DOI: 10.1016/j.bioadv.2022.212727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Dong R, Tian S, Bai J, Yu K, Liu C, Liu L, Tian D. Electrospun Polycaprolactone (PCL)-Amnion Nanofibrous Membrane Promotes Nerve Repair after Neurolysis. J Biomater Appl 2022;:8853282211060598. [PMID: 34995155 DOI: 10.1177/08853282211060598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Aleemardani M, Zare P, Seifalian A, Bagher Z, Seifalian AM. Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury. Biomedicines 2022;10:73. [DOI: 10.3390/biomedicines10010073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021;26:7031. [PMID: 34834124 DOI: 10.3390/molecules26227031] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
13 Li C, Zhang M, Liu SY, Zhang FS, Wan T, Ding ZT, Zhang PX. Chitin Nerve Conduits with Three-Dimensional Spheroids of Mesenchymal Stem Cells from SD Rats Promote Peripheral Nerve Regeneration. Polymers (Basel) 2021;13:3957. [PMID: 34833256 DOI: 10.3390/polym13223957] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
14 Yan X, Yu Y, Wang S, Xu H, He Q, Wen J, Xu J, Li K, Huang Z, Xu P. Preparation and characterization of conductive nerve guide conduit filled with dual drug-loaded nanofibers. Journal of Bioactive and Compatible Polymers 2021;36:531-47. [DOI: 10.1177/08839115211053917] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Chummun I, Bekah D, Goonoo N, Bhaw-Luximon A. Assessing the mechanisms of action of natural molecules/extracts for phase-directed wound healing in hydrogel scaffolds. RSC Med Chem 2021;12:1476-90. [PMID: 34671732 DOI: 10.1039/d1md00100k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Wang X, Guo M, Liu Y, Niu K, Zheng X, Yang Y, Wang P. Reduced Graphene Oxide Fibers for Guidance Growth of Trigeminal Sensory Neurons. ACS Appl Bio Mater 2021;4:4236-43. [PMID: 35006836 DOI: 10.1021/acsabm.1c00058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Grijalvo S, Díaz DD. Graphene-based hybrid materials as promising scaffolds for peripheral nerve regeneration. Neurochem Int 2021;147:105005. [PMID: 33667593 DOI: 10.1016/j.neuint.2021.105005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
18 Zhang J, Zhang X, Wang C, Li F, Qiao Z, Zeng L, Wang Z, Liu H, Ding J, Yang H. Conductive Composite Fiber with Optimized Alignment Guides Neural Regeneration under Electrical Stimulation. Adv Healthc Mater 2021;10:e2000604. [PMID: 33300246 DOI: 10.1002/adhm.202000604] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 13.0] [Reference Citation Analysis]
19 Wang W, Hou Y, Martinez D, Kurniawan D, Chiang WH, Bartolo P. Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers (Basel) 2020;12:E2946. [PMID: 33317211 DOI: 10.3390/polym12122946] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
20 Mauri E, Salvati A, Cataldo A, Mozetic P, Basoli F, Abbruzzese F, Trombetta M, Bellucci S, Rainer A. Graphene-laden hydrogels: A strategy for thermally triggered drug delivery. Mater Sci Eng C Mater Biol Appl 2021;118:111353. [PMID: 33254973 DOI: 10.1016/j.msec.2020.111353] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
21 Oprea M, Voicu SI. Cellulose Composites with Graphene for Tissue Engineering Applications. Materials (Basel) 2020;13:E5347. [PMID: 33255827 DOI: 10.3390/ma13235347] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
22 Hayes AJ, Melrose J. Electro‐Stimulation, a Promising Therapeutic Treatment Modality for Tissue Repair: Emerging Roles of Sulfated Glycosaminoglycans as Electro‐Regulatory Mediators of Intrinsic Repair Processes. Adv Therap 2020;3:2000151. [DOI: 10.1002/adtp.202000151] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
23 Jaswal R, Shrestha S, Shrestha BK, Kumar D, Park CH, Kim CS. Nanographene enfolded AuNPs sophisticatedly synchronized polycaprolactone based electrospun nanofibre scaffold for peripheral nerve regeneration. Mater Sci Eng C Mater Biol Appl 2020;116:111213. [PMID: 32806222 DOI: 10.1016/j.msec.2020.111213] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]