BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Maity R, Chatterjee M, Banerjee A, Das A, Mishra R, Mazumder S, Chanda N. Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells. Mater Sci Eng C Mater Biol Appl 2019;104:109909. [PMID: 31499983 DOI: 10.1016/j.msec.2019.109909] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Oh JW, Muthu M, Pushparaj SSC, Gopal J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023;28. [PMID: 36903395 DOI: 10.3390/molecules28052151] [Reference Citation Analysis]
2 Liu C, Liu A, Zhou J, Zhang Y, Zhou F, Chen H, Liu Q, Zhang S, Huang J, Liu Z. Role and Mechanism of Theaflavins in Regulating Skeletal Muscle Inflammation. J Agric Food Chem 2022. [PMID: 36215649 DOI: 10.1021/acs.jafc.2c04063] [Reference Citation Analysis]
3 Farhan M. Green Tea Catechins: Nature’s Way of Preventing and Treating Cancer. IJMS 2022;23:10713. [DOI: 10.3390/ijms231810713] [Reference Citation Analysis]
4 Mobaraki F, Momeni M, Jahromi M, Kasmaie FM, Barghbani M, Yazdi MET, Meshkat Z, Shandiz FH, Hosseini SM. Apoptotic, antioxidant and cytotoxic properties of synthesized AgNPs using green tea against human testicular embryonic cancer stem cells. Process Biochemistry 2022;119:106-18. [DOI: 10.1016/j.procbio.2022.05.021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
5 Salas-huenuleo E, Hernández A, Lobos-gonzález L, Polakovičová I, Morales-zavala F, Araya E, Celis F, Romero C, Kogan MJ. Peptide Targeted Gold Nanoplatform Carrying miR-145 Induces Antitumoral Effects in Ovarian Cancer Cells. Pharmaceutics 2022;14:958. [DOI: 10.3390/pharmaceutics14050958] [Reference Citation Analysis]
6 Shen L, Zhan X, Angeloni C. Mitochondrial Dysfunction Pathway Alterations Offer Potential Biomarkers and Therapeutic Targets for Ovarian Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-22. [DOI: 10.1155/2022/5634724] [Reference Citation Analysis]
7 Monni N, Angotzi MS, Oggianu M, Sahadevan SA, Mercuri ML. Redox-active benzoquinones as challenging “ non-innocent ” linkers to construct 2D frameworks and nanostructures with tunable physical properties. J Mater Chem C. [DOI: 10.1039/d1tc05335c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
8 Luo T, Jiang JG. Anticancer Effects and Molecular Target of Theaflavins from Black Tea Fermentation in Vitro and in Vivo. J Agric Food Chem 2021;69:15052-65. [PMID: 34878780 DOI: 10.1021/acs.jafc.1c05313] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Mobaraki F, Momeni M, Taghavizadeh Yazdi ME, Meshkat Z, Silanian Toosi M, Hosseini SM. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochemistry 2021;111:167-77. [DOI: 10.1016/j.procbio.2021.09.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
10 Shan Z, Nisar MF, Li M, Zhang C, Wan CC. Theaflavin Chemistry and Its Health Benefits. Oxid Med Cell Longev 2021;2021:6256618. [PMID: 34804369 DOI: 10.1155/2021/6256618] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
11 Linh DTP, Nghia NT, Vu NT, Ha TLT, Luan LQ. Synthesis of Carboxymethyl Chitosan-Capped Gold Nanoparticles by Gamma Irradiation with Novel Potential Applications as Antioxidant, Hepatoprotective, and Anticancer Substance. Journal of Nanomaterials 2021;2021:1-12. [DOI: 10.1155/2021/7165504] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Dobrucka R, Romaniuk-Drapała A, Kaczmarek M. Facile synthesis of Au/ZnO/Ag nanoparticles using Glechoma hederacea L. extract, and their activity against leukemia. Biomed Microdevices 2021;23:14. [PMID: 33683457 DOI: 10.1007/s10544-021-00557-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
13 Kundu M, Majumder R, Das CK, Mandal M. Natural products based nanoformulations for cancer treatment: Current evolution in Indian research. Biomed Mater 2021. [PMID: 33621207 DOI: 10.1088/1748-605X/abe8f2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Liu K, Zhang R, Liu Y, Chen X, Li K, Pickwell-Macpherson E. Gold nanoparticle enhanced detection of EGFR with a terahertz metamaterial biosensor. Biomed Opt Express 2021;12:1559-67. [PMID: 33796372 DOI: 10.1364/BOE.418859] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
15 Engin AB. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. Adv Exp Med Biol 2021;1275:165-93. [PMID: 33539016 DOI: 10.1007/978-3-030-49844-3_7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
16 Padhi S, Behera A. Advanced drug delivery systems in the treatment of ovarian cancer. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00020-1] [Reference Citation Analysis]
17 Khandanlou R, Murthy V, Wang H. Gold nanoparticle-assisted enhancement in bioactive properties of Australian native plant extracts, Tasmannia lanceolata and Backhousia citriodora. Materials Science and Engineering: C 2020;112:110922. [DOI: 10.1016/j.msec.2020.110922] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
18 Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial Properties of Green Tea Catechins. Int J Mol Sci 2020;21:E1744. [PMID: 32143309 DOI: 10.3390/ijms21051744] [Cited by in Crossref: 139] [Cited by in F6Publishing: 148] [Article Influence: 46.3] [Reference Citation Analysis]
19 Dos Reis SRR, Pinto SR, de Menezes FD, Martinez-Manez R, Ricci-Junior E, Alencar LMR, Helal-Neto E, da Silva de Barros AO, Lisboa PC, Santos-Oliveira R. Senescence and the Impact on Biodistribution of Different Nanosystems: the Discrepancy on Tissue Deposition of Graphene Quantum Dots, Polycaprolactone Nanoparticle and Magnetic Mesoporous Silica Nanoparticles in Young and Elder Animals. Pharm Res 2020;37:40. [PMID: 31970499 DOI: 10.1007/s11095-019-2754-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
20 Chatterjee M, Maity R, Das S, Mahata N, Basu B, Chanda N. Electrospray-based synthesis of fluorescent poly( d , l -lactide- co -glycolide) nanoparticles for the efficient delivery of an anticancer drug and self-monitoring its effect in drug-resistant breast cancer cells. Mater Adv 2020;1:3033-48. [DOI: 10.1039/d0ma00646g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
21 David ME, Grumezescu AM. Tailored Gold Nanoparticles for Cancer Imaging and Therapy. Mater Int 2019;1:013-024. [DOI: 10.33263/materials11.013024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]