BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karimi MH, Mahdavinia GR, Massoumi B. pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with κ-carrageenan. Materials Science and Engineering: C 2018;91:705-14. [DOI: 10.1016/j.msec.2018.06.019] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Mahdavinia GR, Hoseinzadeh H, Labib P, Jabbari P, Mohebbi A, Barzeger S, Jafari H. (Magnetic laponite/κ-carrageenan)@chitosan core–shell carrier for pH-sensitive release of doxorubicin. Polym Bull 2023. [DOI: 10.1007/s00289-023-04688-7] [Reference Citation Analysis]
2 Torabi M, Aghanejad A, Savadi P, Barzegari A, Omidi Y, Barar J. Targeted Delivery of Sunitinib by MUC-1 Aptamer-Capped Magnetic Mesoporous Silica Nanoparticles. Molecules 2023;28. [PMID: 36615606 DOI: 10.3390/molecules28010411] [Reference Citation Analysis]
3 Heragh BK, Javanshir S, Mahdavinia GR, Naimi-jamal MR. Development of pH-sensitive biomaterial-based nanocomposite for highly controlled drug release. Results in Materials 2022;16:100324. [DOI: 10.1016/j.rinma.2022.100324] [Reference Citation Analysis]
4 Alehosseini E, Shahiri Tabarestani H, Kharazmi MS, Jafari SM. Physicochemical, Thermal, and Morphological Properties of Chitosan Nanoparticles Produced by Ionic Gelation. Foods 2022;11. [PMID: 36496649 DOI: 10.3390/foods11233841] [Reference Citation Analysis]
5 Heragh BK, Taherinezhad H, Mahdavinia GR, Javanshir S, Labib P, Ghasemsolb S. pH-responsive co-delivery of Doxorubicin and Saffron via Cross-linked Chitosan/Laponite RD Nanoparticles for Enhanced-Chemotherapy. Materials Today Communications 2022. [DOI: 10.1016/j.mtcomm.2022.104956] [Reference Citation Analysis]
6 Mukherjee S, Madamsetty VS. Inorganic Nanoparticles in Anti-angiogenic Cancer Therapy. Nanoparticles in Angiogenesis and Cancer 2022. [DOI: 10.1007/978-3-031-11284-3_5] [Reference Citation Analysis]
7 Pooresmaeil M, Namazi H. Chitosan Based Nanocomposites for Drug Delivery Application. Nanotechnology for Biomedical Applications 2022. [DOI: 10.1007/978-981-16-7483-9_7] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Tarasi F, Lanza PA, Ferretti V, Echeverría GA, Piro OE, Cacicedo M, Gehring S, León IE, Islas MS. Synthesis and Characterization of Novel Copper(II)-Sunitinib Complex: Molecular Docking, DFT Studies, Hirshfeld Analysis and Cytotoxicity Studies. Inorganics 2022;10:3. [DOI: 10.3390/inorganics10010003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Shinde A, Panchal K, Katke S, Paliwal R, Chaurasiya A. Tyrosine kinase inhibitors as next generation oncological therapeutics: Current strategies, limitations and future perspectives. Therapie 2021:S0040-5957(21)00215-8. [PMID: 34823895 DOI: 10.1016/j.therap.2021.10.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Heragh BK, Javanshir S, Mahdavinia GR, Jamal MRN. Hydroxyapatite grafted chitosan/laponite RD hydrogel: Evaluation of the encapsulation capacity, pH-responsivity, and controlled release behavior. Int J Biol Macromol 2021;190:351-9. [PMID: 34492248 DOI: 10.1016/j.ijbiomac.2021.08.220] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
11 Pushpamalar J, Meganathan P, Tan HL, Dahlan NA, Ooi LT, Neerooa BNHM, Essa RZ, Shameli K, Teow SY. Development of a Polysaccharide-Based Hydrogel Drug Delivery System (DDS): An Update. Gels 2021;7:153. [PMID: 34698125 DOI: 10.3390/gels7040153] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
12 Kashani HM, Madrakian T, Afkhami A. Development of modified polymer dot as stimuli-sensitive and 67Ga radio-carrier, for investigation of in vitro drug delivery, in vivo imaging and drug release kinetic. J Pharm Biomed Anal 2021;203:114217. [PMID: 34166925 DOI: 10.1016/j.jpba.2021.114217] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Jafari H, Atlasi Z, Mahdavinia GR, Hadifar S, Sabzi M. Magnetic κ-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. Mater Sci Eng C Mater Biol Appl 2021;124:112042. [PMID: 33947542 DOI: 10.1016/j.msec.2021.112042] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
14 Jafari H, Mahdavinia GR, Kazemi B, Ehrlich H, Joseph Y, Rahimi-Nasrabadi M. Highly efficient sunitinib release from pH-responsive mHPMC@Chitosan core-shell nanoparticles. Carbohydr Polym 2021;258:117719. [PMID: 33593581 DOI: 10.1016/j.carbpol.2021.117719] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
15 Jiang J, Zhang W, Ni W, Shao J. Insight on structure-property relationships of carrageenan from marine red algal: A review. Carbohydrate Polymers 2021;257:117642. [DOI: 10.1016/j.carbpol.2021.117642] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
16 Jalal NR, Madrakian T, Afkhami A, Ghoorchian A. Graphene oxide nanoribbons/polypyrrole nanocomposite film: Controlled release of leucovorin by electrical stimulation. Electrochimica Acta 2021;370:137806. [DOI: 10.1016/j.electacta.2021.137806] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Alinavaz S, Mahdavinia GR, Jafari H, Hazrati M, Akbari A. Hydroxyapatite (HA)-based hybrid bionanocomposite hydrogels: Ciprofloxacin delivery, release kinetics and antibacterial activity. Journal of Molecular Structure 2021;1225:129095. [DOI: 10.1016/j.molstruc.2020.129095] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
18 Ahmad MZ, Rizwanullah M, Ahmad J, Alasmary MY, Akhter MH, Abdel-wahab BA, Warsi MH, Haque A. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2020.1869737] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 10.5] [Reference Citation Analysis]
19 Dhavale RP, Dhavale R, Sahoo S, Kollu P, Jadhav S, Patil P, Dongale T, Chougale A, Patil P. Chitosan coated magnetic nanoparticles as carriers of anticancer drug Telmisartan: pH-responsive controlled drug release and cytotoxicity studies. Journal of Physics and Chemistry of Solids 2021;148:109749. [DOI: 10.1016/j.jpcs.2020.109749] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
20 Jin W, Wang Z, Peng D, Shen W, Zhu Z, Cheng S, Li B, Huang Q. Effect of linear charge density of polysaccharides on interactions with α-amylase: Self-Assembling behavior and application in enzyme immobilization. Food Chem 2020;331:127320. [PMID: 32562981 DOI: 10.1016/j.foodchem.2020.127320] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
21 Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar Drugs 2020;18:E583. [PMID: 33238488 DOI: 10.3390/md18110583] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 22.0] [Reference Citation Analysis]
22 Patel SR, Patel RH, Patel MP. Eco-friendly bioadsorbent-based polymer composites as a pH-responsive material for selective removal of anionic and azo dyes from aqueous solutions. Journal of Macromolecular Science, Part A 2021;58:97-110. [DOI: 10.1080/10601325.2020.1827957] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Liu X, Wang J, Hu W. Preparation and controlled inhibition behavior of Fe3O4/CS/inhibitors nanocomposite for carbon steel in 3.5% NaCl solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;601:124985. [DOI: 10.1016/j.colsurfa.2020.124985] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
24 ALQuadeib BT, Eltahir EK, Alagili MF. The Oral Administration of Lidocaine HCl Biodegradable Microspheres: Formulation and Optimization. Int J Nanomedicine 2020;15:857-69. [PMID: 32103942 DOI: 10.2147/IJN.S236273] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
25 Yang J, Zang W, Zhang Z, Wang P, Yang Q. The Enhanced and Tunable Sustained Release of Pesticides Using Activated Carbon as a Carrier. Materials (Basel) 2019;12:E4019. [PMID: 31816912 DOI: 10.3390/ma12234019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
26 Kazmi SAR, Qureshi MZ, Ali S, Masson J. In Vitro Drug Release and Biocatalysis from pH-Responsive Gold Nanoparticles Synthesized Using Doxycycline. Langmuir 2019;35:16266-74. [DOI: 10.1021/acs.langmuir.9b02420] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
27 Yarahmadi A, Madrakian T, Afkhami A, Jalal NR. Electrochemical Determination of Sunitinib in Biological Samples Using Polyacrylonitrile Nanofibers/Nickel-Zinc-Ferrite Nanocomposite/Carbon Paste Electrode. J Electrochem Soc 2019;166:B1268-75. [DOI: 10.1149/2.0371914jes] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
28 Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1558. [PMID: 31063240 DOI: 10.1002/wnan.1558] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 8.3] [Reference Citation Analysis]
29 Bruneau M, Bennici S, Brendle J, Dutournie P, Limousy L, Pluchon S. Systems for stimuli-controlled release: Materials and applications. Journal of Controlled Release 2019;294:355-71. [DOI: 10.1016/j.jconrel.2018.12.038] [Cited by in Crossref: 64] [Cited by in F6Publishing: 54] [Article Influence: 16.0] [Reference Citation Analysis]
30 Neamţu M, Nădejde C, Hodoroabă V, Schneider RJ, Ababei G, Panne U. Photocatalysis of γ–cyclodextrin-functionalised Fe3O4 nanoparticles for degrading Bisphenol A in polluted waters. Environ Chem 2019;16:125. [DOI: 10.1071/en18181] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
31 Polat M, Polat H. Recent Advances in Chitosan-Based Systems for Delivery of Anticancer Drugs. Functional Chitosan 2019. [DOI: 10.1007/978-981-15-0263-7_7] [Reference Citation Analysis]