1 |
Suliman Maashi M. CRISPR/Cas-based Aptasensor as an Innovative Sensing Approaches for Food Safety Analysis: Recent Progresses and New Horizons. Crit Rev Anal Chem 2023;:1-19. [PMID: 36940173 DOI: 10.1080/10408347.2023.2188955] [Reference Citation Analysis]
|
2 |
Sukegawa S, Nureki O, Toki S, Saika H. Genome editing in rice mediated by miniature size Cas nuclease SpCas12f. Front Genome Ed 2023;5. [DOI: 10.3389/fgeed.2023.1138843] [Reference Citation Analysis]
|
3 |
Li ZH, Wang J, Xu JP, Wang J, Yang X. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil Med Res 2023;10:12. [PMID: 36895064 DOI: 10.1186/s40779-023-00447-x] [Reference Citation Analysis]
|
4 |
Mazurov D, Ramadan L, Kruglova N. Packaging and Uncoating of CRISPR/Cas Ribonucleoproteins for Efficient Gene Editing with Viral and Non-Viral Extracellular Nanoparticles. Viruses 2023;15:690. [DOI: 10.3390/v15030690] [Reference Citation Analysis]
|
5 |
Ueda J, Yamazaki T, Funakoshi H. Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. Int J Mol Sci 2023;24. [PMID: 36902207 DOI: 10.3390/ijms24054778] [Reference Citation Analysis]
|
6 |
Karvelis T, Siksnys V. Mis-annotation of TnpB: case of TaRGET-ABE. Nat Chem Biol 2023;19:261-2. [PMID: 36797404 DOI: 10.1038/s41589-022-01242-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov 2023;22:213-34. [PMID: 36509911 DOI: 10.1038/s41573-022-00615-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
8 |
Ghani MW, Iqbal A, Ghani H, Bibi S, Wang Z, Pei R. Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. J Mater Chem B 2023. [PMID: 36779580 DOI: 10.1039/d2tb02610d] [Reference Citation Analysis]
|
9 |
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. Sci China Life Sci 2023;:1-44. [PMID: 36753021 DOI: 10.1007/s11427-022-2214-2] [Reference Citation Analysis]
|
10 |
Chang HY, Qi LS. Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Mol Cell 2023;83:442-51. [PMID: 36736311 DOI: 10.1016/j.molcel.2023.01.010] [Reference Citation Analysis]
|
11 |
Lee HJ, Kim HJ, Lee SJ. Miniature CRISPR-Cas12f1-Mediated Single-Nucleotide Microbial Genome Editing Using 3'-Truncated sgRNA. CRISPR J 2023;6:52-61. [PMID: 36576897 DOI: 10.1089/crispr.2022.0071] [Reference Citation Analysis]
|
12 |
Han YH, Kim G, Seo SW. Programmable synthetic biology tools for developing microbial cell factories. Curr Opin Biotechnol 2023;79:102874. [PMID: 36610368 DOI: 10.1016/j.copbio.2022.102874] [Reference Citation Analysis]
|
13 |
Zhang S, Song L, Yuan B, Zhang C, Cao J, Chen J, Qiu J, Tai Y, Chen J, Qiu Z, Zhao XM, Cheng TL. TadA reprogramming to generate potent miniature base editors with high precision. Nat Commun 2023;14:413. [PMID: 36702845 DOI: 10.1038/s41467-023-36004-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science 2023;379:eadd8643. [PMID: 36656942 DOI: 10.1126/science.add8643] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
15 |
Huang H, Lv W, Li J, Huang G, Tan Z, Hu Y, Ma S, Zhang X, Huang L, Lin Y. Comparison of DNA targeting CRISPR editors in human cells. Cell Biosci 2023;13:11. [PMID: 36647130 DOI: 10.1186/s13578-023-00958-z] [Reference Citation Analysis]
|
16 |
Song B, Bae S. Introduction and Perspectives of DNA Base Editors. Methods Mol Biol 2023;2606:3-11. [PMID: 36592303 DOI: 10.1007/978-1-0716-2879-9_1] [Reference Citation Analysis]
|
17 |
Tou CJ, Orr B, Kleinstiver BP. Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. Nat Biotechnol 2023. [PMID: 36593413 DOI: 10.1038/s41587-022-01574-x] [Reference Citation Analysis]
|
18 |
Jeong SH, Lee HJ, Lee SJ. Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. J Microbiol 2023;61:13-36. [PMID: 36723794 DOI: 10.1007/s12275-022-00005-5] [Reference Citation Analysis]
|
19 |
Huang TP, Heins ZJ, Miller SM, Wong BG, Balivada PA, Wang T, Khalil AS, Liu DR. High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs. Nat Biotechnol 2023;41:96-107. [PMID: 36076084 DOI: 10.1038/s41587-022-01410-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
|
20 |
Chavez M, Chen X, Finn PB, Qi LS. Advances in CRISPR therapeutics. Nat Rev Nephrol 2023;19:9-22. [PMID: 36280707 DOI: 10.1038/s41581-022-00636-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
21 |
Dodds WJ. One Health: Animal Models of Heritable Human Bleeding Diseases. Animals (Basel) 2022;13. [PMID: 36611696 DOI: 10.3390/ani13010087] [Reference Citation Analysis]
|
22 |
Li HS, Israni DV, Gagnon KA, Gan KA, Raymond MH, Sander JD, Roybal KT, Joung JK, Wong WW, Khalil AS. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science 2022;378:1227-34. [PMID: 36520914 DOI: 10.1126/science.ade0156] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
23 |
Aliaga Goltsman DS, Alexander LM, Lin JL, Fregoso Ocampo R, Freeman B, Lamothe RC, Perez Rivas A, Temoche-Diaz MM, Chadha S, Nordenfelt N, Janson OP, Barr I, Devoto AE, Cost GJ, Butterfield CN, Thomas BC, Brown CT. Compact Cas9d and HEARO enzymes for genome editing discovered from uncultivated microbes. Nat Commun 2022;13:7602. [PMID: 36522342 DOI: 10.1038/s41467-022-35257-7] [Reference Citation Analysis]
|
24 |
Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, Lu T, Maroc L, Norman TM, Song B, Stanley G, Chen S, Garnett M, Li W, Moffat J, Qi LS, Shapiro RS, Shendure J, Weissman JS, Zhuang X. High-content CRISPR screening. Nat Rev Methods Primers 2022;2. [DOI: 10.1038/s43586-021-00093-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
|
25 |
Nguyen GT, Dhingra Y, Sashital DG. Miniature CRISPR-Cas12 endonucleases - Programmed DNA targeting in a smaller package. Curr Opin Struct Biol 2022;77:102466. [PMID: 36170778 DOI: 10.1016/j.sbi.2022.102466] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Wu WY, Mohanraju P, Liao C, Adiego-Pérez B, Creutzburg SCA, Makarova KS, Keessen K, Lindeboom TA, Khan TS, Prinsen S, Joosten R, Yan WX, Migur A, Laffeber C, Scott DA, Lebbink JHG, Koonin EV, Beisel CL, van der Oost J. The miniature CRISPR-Cas12m effector binds DNA to block transcription. Mol Cell 2022;82:4487-4502.e7. [PMID: 36427491 DOI: 10.1016/j.molcel.2022.11.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Li Q, Gao Y, Wang H. CRISPR-Based Tools for Fighting Rare Diseases. Life (Basel) 2022;12. [PMID: 36556333 DOI: 10.3390/life12121968] [Reference Citation Analysis]
|
28 |
Huang C, Li Q, Li J. Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. Medical Review 2022;0. [DOI: 10.1515/mr-2022-0029] [Reference Citation Analysis]
|
29 |
Zhang B, Lin J, Perčulija V, Li Y, Lu Q, Chen J, Ouyang S. Structural insights into target DNA recognition and cleavage by the CRISPR-Cas12c1 system. Nucleic Acids Res 2022;50:11820-33. [PMID: 36321657 DOI: 10.1093/nar/gkac987] [Reference Citation Analysis]
|
30 |
Tan J, Forner J, Karcher D, Bock R. DNA base editing in nuclear and organellar genomes. Trends Genet 2022;38:1147-69. [PMID: 35853769 DOI: 10.1016/j.tig.2022.06.015] [Reference Citation Analysis]
|
31 |
Qiu M, Zhang J, Pang L, Zhang Y, Zhao Q, Jiang Y, Yang X, Man C. Recent advances on CRISPR/Cas system-enabled portable detection devices for on-site agri-food safety assay. Trends in Food Science & Technology 2022;129:364-387. [DOI: 10.1016/j.tifs.2022.09.023] [Reference Citation Analysis]
|
32 |
Escobar M, Li J, Patel A, Liu S, Xu Q, Hilton IB. Quantification of Genome Editing and Transcriptional Control Capabilities Reveals Hierarchies among Diverse CRISPR/Cas Systems in Human Cells. ACS Synth Biol 2022;11:3239-50. [PMID: 36162812 DOI: 10.1021/acssynbio.2c00156] [Reference Citation Analysis]
|
33 |
Urbaitis T, Gasiunas G, Young JK, Hou Z, Paulraj S, Godliauskaite E, Juskeviciene MM, Stitilyte M, Jasnauskaite M, Mabuchi M, Robb GB, Siksnys V. A new family of CRISPR-type V nucleases with C-rich PAM recognition. EMBO Rep 2022;23:e55481. [PMID: 36268581 DOI: 10.15252/embr.202255481] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
34 |
Rittiner J, Cumaran M, Malhotra S, Kantor B. Therapeutic modulation of gene expression in the disease state: Treatment strategies and approaches for the development of next-generation of the epigenetic drugs. Front Bioeng Biotechnol 2022;10:1035543. [DOI: 10.3389/fbioe.2022.1035543] [Reference Citation Analysis]
|
35 |
Merle N, Elmshäuser S, Strassheimer F, Wanzel M, König AM, Funk J, Neumann M, Kochhan K, Helmprobst F, Pagenstecher A, Nist A, Mernberger M, Schneider A, Braun T, Borggrefe T, Savai R, Timofeev O, Stiewe T. Monitoring autochthonous lung tumors induced by somatic CRISPR gene editing in mice using a secreted luciferase. Mol Cancer 2022;21:191. [PMID: 36192757 DOI: 10.1186/s12943-022-01661-2] [Reference Citation Analysis]
|
36 |
Major L, McClements ME, MacLaren RE. New CRISPR Tools to Correct Pathogenic Mutations in Usher Syndrome. Int J Mol Sci 2022;23:11669. [PMID: 36232969 DOI: 10.3390/ijms231911669] [Reference Citation Analysis]
|
37 |
Wang Y, Wang Y, Pan D, Yu H, Zhang Y, Chen W, Li F, Wu Z, Ji Q. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Rep 2022;40:111418. [PMID: 36170834 DOI: 10.1016/j.celrep.2022.111418] [Reference Citation Analysis]
|
38 |
Shang S, Cai XS, Qi LS. Computation empowers CRISPR discovery and technology. Nat Comput Sci 2022;2:533-535. [DOI: 10.1038/s43588-022-00321-1] [Reference Citation Analysis]
|
39 |
Xin C, Yin J, Yuan S, Ou L, Liu M, Zhang W, Hu J. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-33346-1] [Reference Citation Analysis]
|
40 |
Kim DY, Chung Y, Lee Y, Jeong D, Park KH, Chin HJ, Lee JM, Park S, Ko S, Ko JH, Kim YS. Hypercompact adenine base editors based on transposase B guided by engineered RNA. Nat Chem Biol 2022;18:1005-13. [PMID: 35915259 DOI: 10.1038/s41589-022-01077-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
41 |
Zhou W, Yang J, Zhang Y, Hu X, Wang W. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm (2020) 2022;3:e155. [PMID: 35845351 DOI: 10.1002/mco2.155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
42 |
Zhu C, Zhang F, Li H, Chen Z, Yan M, Li L, Qu F. CRISPR/Cas Systems Accelerating the Development of Aptasensors. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116775] [Reference Citation Analysis]
|
43 |
Bean BDM, Whiteway M, Martin VJJ. The MyLO CRISPR-Cas9 toolkit: a markerless yeast localization and overexpression CRISPR-Cas9 toolkit. G3 Genes|Genomes|Genetics 2022;12. [DOI: 10.1093/g3journal/jkac154] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
44 |
Kaukonen M, McClements ME, MacLaren RE. CRISPR DNA Base Editing Strategies for Treating Retinitis Pigmentosa Caused by Mutations in Rhodopsin. Genes (Basel) 2022;13:1327. [PMID: 35893064 DOI: 10.3390/genes13081327] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
45 |
Freitas MV, Frâncio L, Haleva L, Matte UDS. Protection is not always a good thing: The immune system's impact on gene therapy. Genet Mol Biol 2022;45:e20220046. [PMID: 35852088 DOI: 10.1590/1678-4685-GMB-2022-0046] [Reference Citation Analysis]
|
46 |
Segal DJ. The promise of gene editing: so close and yet so perilously far. Front Genome Ed 2022;4. [DOI: 10.3389/fgeed.2022.974798] [Reference Citation Analysis]
|
47 |
Yang S, Joesaar A, Bögels BWA, Mann S, de Greef TFA. Protocellular CRISPR/Cas‐Based Diffusive Communication Using Transcriptional RNA Signaling. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202202436] [Reference Citation Analysis]
|
48 |
Zhang H, Kong X, Xue M, Wang Z, Wei Y, Wang H, Zhou J, Zhang W, Xu M, Shen X, Li J, Hu J, Zhong N, Zhou Y, Yang H. An engineered xCas12i with high activity, high specificity and broad PAM range.. [DOI: 10.1101/2022.06.15.496255] [Reference Citation Analysis]
|
49 |
Uranga M, Daròs JA. Tools and targets: The dual role of plant viruses in CRISPR-Cas genome editing. Plant Genome 2022;:e20220. [PMID: 35698891 DOI: 10.1002/tpg2.20220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
50 |
Marino ND, Pinilla-Redondo R, Bondy-Denomy J. CRISPR-Cas12a targeting of ssDNA plays no detectable role in immunity. Nucleic Acids Res 2022:gkac462. [PMID: 35670674 DOI: 10.1093/nar/gkac462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
51 |
Li J, Yu X, Zhang C, Li N, Zhao J. The application of CRISPR/Cas technologies to Brassica crops: current progress and future perspectives. aBIOTECH 2022;3:146-61. [PMID: 36304520 DOI: 10.1007/s42994-022-00076-3] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
52 |
Chen S, Liu Z, Xie W, Yu H, Lai L, Li Z. Compact Cje3Cas9 for Efficient In Vivo Genome Editing and Adenine Base Editing. CRISPR J 2022;5:472-86. [PMID: 35686977 DOI: 10.1089/crispr.2021.0143] [Reference Citation Analysis]
|
53 |
Yin J, Hu J. The origin of unwanted editing byproducts in gene editing. Acta Biochim Biophys Sin (Shanghai) 2022;54:767-81. [PMID: 35643959 DOI: 10.3724/abbs.2022056] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
54 |
McGaw C, Garrity AJ, Munoz GZ, Haswell JR, Sengupta S, Keston-Smith E, Hunnewell P, Ornstein A, Bose M, Wessells Q, Jakimo N, Yan P, Zhang H, Alfonse LE, Ziblat R, Carte JM, Lu WC, Cerchione D, Hilbert B, Sothiselvam S, Yan WX, Cheng DR, Scott DA, DiTommaso T, Chong S. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nat Commun 2022;13:2833. [PMID: 35595757 DOI: 10.1038/s41467-022-30465-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
55 |
Worthington AK, Forsberg EC. A CRISPR view of hematopoietic stem cells: Moving innovative bioengineering into the clinic. Am J Hematol 2022. [PMID: 35560111 DOI: 10.1002/ajh.26588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
56 |
Wang JW, Goh N, Lien E, González-grandío E, Landry MP. Quantification of cell penetrating peptide mediated delivery of proteins in plant leaves.. [DOI: 10.1101/2022.05.03.490515] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
57 |
Pulman J, Sahel JA, Dalkara D. New Editing Tools for Gene Therapy in Inherited Retinal Dystrophies. CRISPR J 2022. [PMID: 35506982 DOI: 10.1089/crispr.2021.0141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
58 |
Sukegawa S, Toki S, Saika H. Genome Editing Technology and Its Application to Metabolic Engineering in Rice. Rice (N Y) 2022;15:21. [PMID: 35366102 DOI: 10.1186/s12284-022-00566-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
59 |
Rodriguez-concepcion M, Daròs J. Transient expression systems to rewire plant carotenoid metabolism. Current Opinion in Plant Biology 2022;66:102190. [DOI: 10.1016/j.pbi.2022.102190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
60 |
Guo LY, Bian J, Davis AE, Liu P, Kempton HR, Zhang X, Chemparathy A, Gu B, Lin X, Rane DA, Xu X, Jamiolkowski RM, Hu Y, Wang S, Qi LS. Multiplexed genome regulation in vivo with hyper-efficient Cas12a. Nat Cell Biol 2022;24:590-600. [PMID: 35414015 DOI: 10.1038/s41556-022-00870-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 17.0] [Reference Citation Analysis]
|
61 |
Das S, Bano S, Kapse P, Kundu GC. CRISPR based therapeutics: a new paradigm in cancer precision medicine. Mol Cancer 2022;21:85. [PMID: 35337340 DOI: 10.1186/s12943-022-01552-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
62 |
Chen J, Liu Y, Mahadevan R. Genetic engineering of Acidithiobacillus ferridurans with CRISPR-Cas9/dCas9 systems.. [DOI: 10.1101/2022.03.14.484339] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
63 |
Dominguez AA, Chavez MG, Urke A, Gao Y, Wang L, Qi LS. CRISPR-mediated Synergistic Epigenetic and Transcriptional Control. CRISPR J 2022. [PMID: 35271371 DOI: 10.1089/crispr.2021.0099] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
64 |
Marino ND, Pinilla-redondo R, Bondy-denomy J. CRISPR-Cas12a targeting of ssDNA plays no detectable role in immunity.. [DOI: 10.1101/2022.03.10.483831] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
65 |
Chen B, Li Y, Xu F, Yang X. Powerful CRISPR-Based Biosensing Techniques and Their Integration With Microfluidic Platforms. Front Bioeng Biotechnol 2022;10:851712. [DOI: 10.3389/fbioe.2022.851712] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
66 |
Nishiga M, Liu C, Qi LS, Wu JC. The use of new CRISPR tools in cardiovascular research and medicine. Nat Rev Cardiol 2022. [PMID: 35145236 DOI: 10.1038/s41569-021-00669-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
|
67 |
Blassberg R. Genome Editing of Pluripotent Stem Cells for Adoptive and Regenerative Cell Therapies. GEN Biotechnology 2022;1:77-90. [DOI: 10.1089/genbio.2021.0010] [Reference Citation Analysis]
|
68 |
Tsuchida CA, Zhang S, Doost MS, Zhao Y, Wang J, O’brien E, Fang H, Li C, Li D, Hai Z, Chuck J, Brötzmann J, Vartoumian A, Burstein D, Chen X, Nogales E, Doudna JA, Liu JG. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Molecular Cell 2022. [DOI: 10.1016/j.molcel.2022.02.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
|
69 |
Piotter E, Mcclements ME, Maclaren RE. The Scope of Pathogenic ABCA4 Mutations Targetable by CRISPR DNA Base Editing Systems—A Systematic Review. Front Genet 2022;12:814131. [DOI: 10.3389/fgene.2021.814131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
70 |
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022;82:348-88. [PMID: 35063100 DOI: 10.1016/j.molcel.2021.12.026] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 28.0] [Reference Citation Analysis]
|
71 |
Wang Y, Sang S, Zhang X, Tao H, Guan Q, Liu C. Efficient Genome Editing by a Miniature CRISPR-AsCas12f1 Nuclease in Bacillus anthracis. Front Bioeng Biotechnol 2022;9:825493. [DOI: 10.3389/fbioe.2021.825493] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
72 |
Gong Z, Cheng M, Botella JR. Non-GM Genome Editing Approaches in Crops. Front Genome Ed 2021;3:817279. [PMID: 34977860 DOI: 10.3389/fgeed.2021.817279] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
73 |
Chira S, Nutu A, Bica C, Pop L, Gherman M, Angheluta M, Berindan-neagoe I. Turning Tables for CRISPR/Cas9 Editing System: From Scratch to Advanced Delivery Platforms. Handbook of Cancer and Immunology 2022. [DOI: 10.1007/978-3-030-80962-1_292-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
74 |
Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet 2022;23:265-80. [PMID: 34983972 DOI: 10.1038/s41576-021-00439-4] [Cited by in Crossref: 98] [Cited by in F6Publishing: 92] [Article Influence: 98.0] [Reference Citation Analysis]
|
75 |
Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Mol Cell 2021:S1097-2765(21)01039-X. [PMID: 34968414 DOI: 10.1016/j.molcel.2021.12.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 16.0] [Reference Citation Analysis]
|
76 |
Bean BD, Whiteway M, Martin VJ. The MyLo CRISPR-Cas9 Toolkit: A Markerless Yeast Localization and Overexpression CRISPR-Cas9 Toolkit.. [DOI: 10.1101/2021.12.15.472800] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
77 |
Bellingrath JS, McClements ME, Kaukonen M, Fischer MD, MacLaren RE. In Silico Analysis of Pathogenic CRB1 Single Nucleotide Variants and Their Amenability to Base Editing as a Potential Lead for Therapeutic Intervention. Genes (Basel) 2021;12:1908. [PMID: 34946856 DOI: 10.3390/genes12121908] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
78 |
Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci 2021;28:77. [PMID: 34781949 DOI: 10.1186/s12929-021-00772-0] [Reference Citation Analysis]
|
79 |
Weuring W, Geerligs J, Koeleman BPC. Gene Therapies for Monogenic Autism Spectrum Disorders. Genes (Basel) 2021;12:1667. [PMID: 34828273 DOI: 10.3390/genes12111667] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
80 |
Koch L. CRISPR systems go mini. Nat Rev Genet 2021;22:690. [PMID: 34522033 DOI: 10.1038/s41576-021-00419-8] [Reference Citation Analysis]
|
81 |
Strzyz P. Miniaturizing Cas. Nat Rev Mol Cell Biol 2021;22:711. [PMID: 34489591 DOI: 10.1038/s41580-021-00420-3] [Reference Citation Analysis]
|