BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gokhale NS, McIntyre ABR, Mattocks MD, Holley CL, Lazear HM, Mason CE, Horner SM. Altered m6A Modification of Specific Cellular Transcripts Affects Flaviviridae Infection. Mol Cell 2020;77:542-555.e8. [PMID: 31810760 DOI: 10.1016/j.molcel.2019.11.007] [Cited by in Crossref: 77] [Cited by in F6Publishing: 81] [Article Influence: 19.3] [Reference Citation Analysis]
Number Citing Articles
1 Phillips S, Mishra T, Khadka S, Bohan D, Espada CE, Maury W, Wu L. Epitranscriptomic N(6)-Methyladenosine Profile of SARS-CoV-2-Infected Human Lung Epithelial Cells. Microbiol Spectr 2023;:e0394322. [PMID: 36625663 DOI: 10.1128/spectrum.03943-22] [Reference Citation Analysis]
2 Zhang Y, Guo J, Gao Y, Li S, Pan T, Xu G, Li X, Li Y, Yang J. Dynamic transcriptome analyses reveal m(6)A regulated immune non-coding RNAs during dengue disease progression. Heliyon 2023;9:e12690. [PMID: 36685392 DOI: 10.1016/j.heliyon.2022.e12690] [Reference Citation Analysis]
3 Nishizaki SS, Mariano NAF, La GN, Uribe-salazar JM, Kaya G, Andrews DS, Nordahl CW, Amaral DG, Dennis MY. A Subphenotype-to-Genotype Approach Reveals Disproportionate Megalencephaly Autism Risk Genes.. [DOI: 10.1101/2022.12.21.22283275] [Reference Citation Analysis]
4 Li H, Guo Y, Qi W, Liao M. N(6)-methyladenosine modification of viral RNA and its role during the recognition process of RIG-I-like receptors. Front Immunol 2022;13:1031200. [PMID: 36582239 DOI: 10.3389/fimmu.2022.1031200] [Reference Citation Analysis]
5 Xu G, Gao Y, Pan T, Li S, Zhang Y, Guo J, Tian Z, Xu J, Li Y, Li X. Dynamic immune ecosystem of dengue infection revealed by single-cell sequencing. J Leukoc Biol 2022;112:1621-31. [PMID: 35766188 DOI: 10.1002/JLB.6MA0622-738RR] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Hu T, Wang J, Li W, Liu M, Han N, Yuan M, Du L, Tang H. Endoplasmic Reticulum Stress in Hepatitis B Virus and Hepatitis C Virus Infection. Viruses 2022;14. [PMID: 36560634 DOI: 10.3390/v14122630] [Reference Citation Analysis]
7 Sacco MT, Bland KM, Horner SM. WTAP Targets the METTL3 m(6)A-Methyltransferase Complex to Cytoplasmic Hepatitis C Virus RNA to Regulate Infection. J Virol 2022;96:e0099722. [PMID: 36314819 DOI: 10.1128/jvi.00997-22] [Reference Citation Analysis]
8 Zhang Y, Qi Y, Huang S, Jiang X, Xiao W, Wang L, Liu Z, Liu S. Role of ER Stress in Xenobiotic-Induced Liver Diseases and Hepatotoxicity. Oxidative Medicine and Cellular Longevity 2022;2022:1-11. [DOI: 10.1155/2022/4640161] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Kang T, Haque MM, Lee B, Hong KT, Hong SC, Kim Y, Lee J, Lee JS, Lee D. Orthogonally-tunable and ER-targeting fluorophores detect avian influenza virus early infection. Nat Commun 2022;13:5841. [PMID: 36192426 DOI: 10.1038/s41467-022-33586-1] [Reference Citation Analysis]
10 Berzal-herranz A, Berzal-herranz B, Ramos-lorente SE, Romero-lópez C. The Genomic 3′ UTR of Flaviviruses Is a Translation Initiation Enhancer. IJMS 2022;23:8604. [DOI: 10.3390/ijms23158604] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Phillips S, Khadka S, Bohan D, Espada CE, Maury W, Wu L. Epitranscriptomic N6-methyladenosine profile of SARS-CoV-2-infected human lung epithelial cells.. [DOI: 10.1101/2022.08.01.502311] [Reference Citation Analysis]
12 Mersinoglu B, Cristinelli S, Ciuffi A. The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses 2022;14:1666. [DOI: 10.3390/v14081666] [Reference Citation Analysis]
13 Jansens RJJ, Verhamme R, Mirza AH, Olarerin-George A, Van Waesberghe C, Jaffrey SR, Favoreel HW. Alphaherpesvirus US3 protein-mediated inhibition of the m6A mRNA methyltransferase complex. Cell Rep 2022;40:111107. [PMID: 35858564 DOI: 10.1016/j.celrep.2022.111107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhang T, Zhang SW, Feng J, Zhang B. m 6  Aexpress-BHM: predicting m6A regulation of gene expression in multiple-groups context by a Bayesian hierarchical mixture model. Brief Bioinform 2022;23:bbac295. [PMID: 35848879 DOI: 10.1093/bib/bbac295] [Reference Citation Analysis]
15 Wei W, Wang G, Zhang H, Bao X, An S, Luo Q, He J, Chen L, Liu Y, Ning C, Lai J, Yuan Z, Chen R, Jiang J, Ye L, Liang H. Talaromyces marneffei suppresses human macrophages inflammatory by producing the truncated protein NCOR2-013 via TUT1-regulated alternative splicing.. [DOI: 10.1101/2022.07.11.499655] [Reference Citation Analysis]
16 Wang Y, Zhou X. N6-methyladenosine and Its Implications in Viruses. Genomics Proteomics Bioinformatics 2022:S1672-0229(22)00083-3. [PMID: 35835441 DOI: 10.1016/j.gpb.2022.04.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sacco MT, Bland KM, Horner SM. WTAP targets the METTL3 m6A-methyltransferase complex to cytoplasmic hepatitis C virus RNA to regulate infection.. [DOI: 10.1101/2022.06.27.497872] [Reference Citation Analysis]
18 Dai Z, Etebari K, Asgari S. N6-methyladenosine modification of the Aedes aegypti transcriptome and its alteration upon dengue virus infection in Aag2 cell line. Commun Biol 2022;5:607. [PMID: 35725909 DOI: 10.1038/s42003-022-03566-8] [Reference Citation Analysis]
19 Zhu D, Liu G, Song Y, Li S, Yang S, Hu D, Li P. Enterovirus 71 VP1 promotes 5-HT release by upregulating the expression of ERICH3 and methyltransferase ZC3H13: VP1 promotes 5-HT release by ERICH3 and ZC3H13 upregulation. Virus Res 2022;:198843. [PMID: 35660571 DOI: 10.1016/j.virusres.2022.198843] [Reference Citation Analysis]
20 Nabi Khan RI, Praharaj MR, Malla WA, Hosamani N, Saxena S, Mishra B, Rajak KK, Dhanavelu M, Tiwari AK, Mishra BP, Sajjanar B, Gandham RK. Changes in m6A RNA methylation of goat lung following PPRV infection.. [DOI: 10.1101/2022.03.24.485342] [Reference Citation Analysis]
21 Zhuo R, Xu M, Wang X, Zhou B, Wu X, Leone V, Chang EB, Zhong X. The regulatory role of N6 -methyladenosine modification in the interaction between host and microbes. Wiley Interdiscip Rev RNA 2022;:e1725. [PMID: 35301791 DOI: 10.1002/wrna.1725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Wilson AC, Mohr I. Control of animal virus replication by RNA adenosine methylation. Adv Virus Res 2022;112:87-114. [PMID: 35840182 DOI: 10.1016/bs.aivir.2022.01.002] [Reference Citation Analysis]
23 Bhattacharya T, Yan L, Crawford JM, Zaher H, Newton ILG, Hardy RW. Differential viral RNA methylation contributes to pathogen blocking in Wolbachia-colonized arthropods. PLoS Pathog 2022;18:e1010393. [PMID: 35294495 DOI: 10.1371/journal.ppat.1010393] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Tong J, Zhang W, Chen Y, Yuan Q, Qin NN, Qu G. The Emerging Role of RNA Modifications in the Regulation of Antiviral Innate Immunity. Front Microbiol 2022;13:845625. [PMID: 35185855 DOI: 10.3389/fmicb.2022.845625] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
25 Macveigh-Fierro D, Cicerchia A, Cadorette A, Sharma V, Muller M. The m6A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay. Proc Natl Acad Sci U S A 2022;119:e2116662119. [PMID: 35177478 DOI: 10.1073/pnas.2116662119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Chen J, Wei X, Wang X, Liu T, Zhao Y, Chen L, Luo Y, Du H, Li Y, Liu T, Cao L, Zhou Z, Zhang Z, Liang L, Li L, Yan X, Zhang X, Deng X, Yang G, Yin P, Hao J, Yin Z, You F. TBK1-METTL3 axis facilitates antiviral immunity. Cell Rep 2022;38:110373. [PMID: 35172162 DOI: 10.1016/j.celrep.2022.110373] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
27 Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022;36:108-32. [PMID: 35193946 DOI: 10.1101/gad.349276.121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Wang S, Lv W, Li T, Zhang S, Wang H, Li X, Wang L, Ma D, Zang Y, Shen J, Xu Y, Wei W. Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Int 2022;22. [DOI: 10.1186/s12935-022-02452-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
29 White LA, Bisom TC, Grimes HL, Hayashi M, Lanchy JM, Lodmell JS. Tra2beta-Dependent Regulation of RIO Kinase 3 Splicing During Rift Valley Fever Virus Infection Underscores the Links Between Alternative Splicing and Innate Antiviral Immunity. Front Cell Infect Microbiol 2021;11:799024. [PMID: 35127560 DOI: 10.3389/fcimb.2021.799024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Zhao B, Wang W, Zhao Y, Qiao H, Gao Z, Chuai X. Regulation of Antiviral Immune Response by N 6-Methyladenosine of mRNA. Front Microbiol 2021;12:789605. [PMID: 34975810 DOI: 10.3389/fmicb.2021.789605] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
31 Zhu D, Song Y, Hu D, Li S, Liu G, Li P, Yang S. Characterization of Enterovirus Associated m6A RNA Methylation in Children With Neurological Symptoms: A Prospective Cohort Study. Front Neurosci 2021;15:791544. [PMID: 34949987 DOI: 10.3389/fnins.2021.791544] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Xiao P, Li M, Zhou M, Zhao X, Wang C, Qiu J, Fang Q, Jiang H, Dong H, Zhou R. TTP protects against acute liver failure by regulating CCL2 and CCL5 through m6A RNA methylation. JCI Insight 2021;6:e149276. [PMID: 34877932 DOI: 10.1172/jci.insight.149276] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
33 Zhu LR, Ni WJ, Cai M, Dai WT, Zhou H. Advances in RNA Epigenetic Modifications in Hepatocellular Carcinoma and Potential Targeted Intervention Strategies. Front Cell Dev Biol 2021;9:777007. [PMID: 34778277 DOI: 10.3389/fcell.2021.777007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zhang Q, Kang Y, Wang S, Gonzalez GM, Li W, Hui H, Wang Y, Rana TM. HIV reprograms host m6Am RNA methylome by viral Vpr protein-mediated degradation of PCIF1. Nat Commun 2021;12:5543. [PMID: 34545078 DOI: 10.1038/s41467-021-25683-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
35 Rojas M, Luz-Crawford P, Soto-Rifo R, Reyes-Cerpa S, Toro-Ascuy D. The Landscape of IFN/ISG Signaling in HIV-1-Infected Macrophages and Its Possible Role in the HIV-1 Latency. Cells 2021;10:2378. [PMID: 34572027 DOI: 10.3390/cells10092378] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
36 Zhang K, Zhang Y, Maharjan Y, Sugiokto FG, Wan J, Li R. Caspases Switch off the m6A RNA Modification Pathway to Foster the Replication of a Ubiquitous Human Tumor Virus. mBio 2021;12:e0170621. [PMID: 34425696 DOI: 10.1128/mBio.01706-21] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
37 Gokhale NS, Smith JR, Van Gelder RD, Savan R. RNA regulatory mechanisms that control antiviral innate immunity. Immunol Rev 2021;304:77-96. [PMID: 34405416 DOI: 10.1111/imr.13019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
38 Thompson MG, Sacco MT, Horner SM. How RNA modifications regulate the antiviral response. Immunol Rev 2021;304:169-80. [PMID: 34405413 DOI: 10.1111/imr.13020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
39 Wang L, Zhang S, Li H, Xu Y, Wu Q, Shen J, Li T, Xu Y. Quantification of m6A RNA methylation modulators pattern was a potential biomarker for prognosis and associated with tumor immune microenvironment of pancreatic adenocarcinoma. BMC Cancer 2021;21:876. [PMID: 34332578 DOI: 10.1186/s12885-021-08550-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
40 Yu PL, Cao SJ, Wu R, Zhao Q, Yan QG. Regulatory effect of m6 A modification on different viruses. J Med Virol 2021. [PMID: 34329499 DOI: 10.1002/jmv.27246] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Lee JH, Hong J, Zhang Z, de la Peña Avalos B, Proietti CJ, Deamicis AR, Guzmán G P, Lam HM, Garcia J, Roudier MP, Sisk AE, De La Rosa R, Vu K, Yang M, Liao Y, Scheirer J, Pechacek D, Yadav P, Rao MK, Zheng S, Johnson-Pais TL, Leach RJ, Elizalde PV, Dray E, Xu K. Regulation of telomere homeostasis and genomic stability in cancer by N 6-adenosine methylation (m6A). Sci Adv 2021;7:eabg7073. [PMID: 34321211 DOI: 10.1126/sciadv.abg7073] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
42 Bechara R, Amatya N, Bailey RD, Li Y, Aggor FEY, Li DD, Jawale CV, Coleman BM, Dai N, Gokhale NS, Taylor TC, Horner SM, Poholek AC, Bansal A, Biswas PS, Gaffen SL. The m6A reader IMP2 directs autoimmune inflammation through an IL-17- and TNFα-dependent C/EBP transcription factor axis. Sci Immunol 2021;6:eabd1287. [PMID: 34215679 DOI: 10.1126/sciimmunol.abd1287] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
43 Burgess HM, Depledge DP, Thompson L, Srinivas KP, Grande RC, Vink EI, Abebe JS, Blackaby WP, Hendrick A, Albertella MR, Kouzarides T, Stapleford KA, Wilson AC, Mohr I. Targeting the m6A RNA modification pathway blocks SARS-CoV-2 and HCoV-OC43 replication. Genes Dev 2021;35:1005-19. [PMID: 34168039 DOI: 10.1101/gad.348320.121] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 13.5] [Reference Citation Analysis]
44 Selberg S, Žusinaite E, Herodes K, Seli N, Kankuri E, Merits A, Karelson M. HIV Replication Is Increased by RNA Methylation METTL3/METTL14/WTAP Complex Activators. ACS Omega 2021;6:15957-63. [PMID: 34179640 DOI: 10.1021/acsomega.1c01626] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
45 Dang Q, Shao B, Zhou Q, Chen C, Guo Y, Wang G, Liu J, Kan Q, Yuan W, Sun Z. RNA N 6-Methyladenosine in Cancer Metastasis: Roles, Mechanisms, and Applications. Front Oncol 2021;11:681781. [PMID: 34211849 DOI: 10.3389/fonc.2021.681781] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
46 Mufrrih M, Chen B, Chan SW. Zika Virus Induces an Atypical Tripartite Unfolded Protein Response with Sustained Sensor and Transient Effector Activation and a Blunted BiP Response. mSphere 2021;6:e0036121. [PMID: 34106769 DOI: 10.1128/mSphere.00361-21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Shen Y, Tang K, Chen D, Hong M, Sun F, Wang S, Ke Y, Wu T, Sun R, Qian J, Du Y. Riok3 inhibits the antiviral immune response by facilitating TRIM40-mediated RIG-I and MDA5 degradation. Cell Rep 2021;35:109272. [PMID: 34161773 DOI: 10.1016/j.celrep.2021.109272] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
48 Baquero-Perez B, Geers D, Díez J. From A to m6A: The Emerging Viral Epitranscriptome. Viruses 2021;13:1049. [PMID: 34205979 DOI: 10.3390/v13061049] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
49 Embarc-Buh A, Francisco-Velilla R, Martinez-Salas E. RNA-Binding Proteins at the Host-Pathogen Interface Targeting Viral Regulatory Elements. Viruses 2021;13:952. [PMID: 34064059 DOI: 10.3390/v13060952] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
50 Li N, Hui H, Bray B, Gonzalez GM, Zeller M, Anderson KG, Knight R, Smith D, Wang Y, Carlin AF, Rana TM. METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection. Cell Rep 2021;35:109091. [PMID: 33961823 DOI: 10.1016/j.celrep.2021.109091] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 26.0] [Reference Citation Analysis]
51 Su Z, Huang D. Alternative Splicing of Pre-mRNA in the Control of Immune Activity. Genes (Basel) 2021;12:574. [PMID: 33921058 DOI: 10.3390/genes12040574] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
52 Kastan JP, Tremblay MW, Brown MC, Trimarco JD, Dobrikova EY, Dobrikov MI, Gromeier M. Enterovirus 2Apro Cleavage of the YTHDF m6A Readers Implicates YTHDF3 as a Mediator of Type I Interferon-Driven JAK/STAT Signaling. mBio 2021;12:e00116-21. [PMID: 33849973 DOI: 10.1128/mBio.00116-21] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
53 Gehring NH, Roignant J. Anything but Ordinary – Emerging Splicing Mechanisms in Eukaryotic Gene Regulation. Trends in Genetics 2021;37:355-72. [DOI: 10.1016/j.tig.2020.10.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
54 Bhattacharya T, Yan L, Zaher H, Newton IL, Hardy RW. Differential viral RNA methylation contributes to pathogen blocking in Wolbachia-colonized arthropods.. [DOI: 10.1101/2021.03.26.437201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Kim GW, Siddiqui A. The role of N6-methyladenosine modification in the life cycle and disease pathogenesis of hepatitis B and C viruses. Exp Mol Med 2021;53:339-45. [PMID: 33742132 DOI: 10.1038/s12276-021-00581-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
56 Dai DL, Li X, Wang L, Xie C, Jin Y, Zeng MS, Zuo Z, Xia TL. Identification of an N6-methyladenosine-mediated positive feedback loop that promotes Epstein-Barr virus infection. J Biol Chem 2021;296:100547. [PMID: 33741341 DOI: 10.1016/j.jbc.2021.100547] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
57 McFadden MJ, McIntyre ABR, Mourelatos H, Abell NS, Gokhale NS, Ipas H, Xhemalçe B, Mason CE, Horner SM. Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine. Cell Rep 2021;34:108798. [PMID: 33657363 DOI: 10.1016/j.celrep.2021.108798] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 11.5] [Reference Citation Analysis]
58 Havranek KE, White LA, Bisom TC, Lanchy JM, Lodmell JS. The Atypical Kinase RIOK3 Limits RVFV Propagation and Is Regulated by Alternative Splicing. Viruses 2021;13:367. [PMID: 33652597 DOI: 10.3390/v13030367] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Bayoumi M, Munir M. Evolutionary conservation of the DRACH signatures of potential N6-methyladenosine (m6A) sites among influenza A viruses. Sci Rep 2021;11:4548. [PMID: 33633224 DOI: 10.1038/s41598-021-84007-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
60 Wilkinson E, Cui YH, He YY. Context-Dependent Roles of RNA Modifications in Stress Responses and Diseases. Int J Mol Sci 2021;22:1949. [PMID: 33669361 DOI: 10.3390/ijms22041949] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
61 Shang C, Li Y, Wu Z, Han Q, Zhu Y, He T, Guo H. The Prognostic Value of DNA Methylation, Post-Translational Modifications and Correlated with Immune Infiltrates in Gynecologic Cancers. Pharmgenomics Pers Med 2021;14:39-53. [PMID: 33488112 DOI: 10.2147/PGPM.S293399] [Reference Citation Analysis]
62 Ruggieri A, Helm M, Chatel-Chaix L. An epigenetic 'extreme makeover': the methylation of flaviviral RNA (and beyond). RNA Biol 2021;18:696-708. [PMID: 33356825 DOI: 10.1080/15476286.2020.1868150] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Sacco MT, Horner SM. Flipping the script: viral capitalization of RNA modifications. Brief Funct Genomics 2021;20:86-93. [PMID: 33401298 DOI: 10.1093/bfgp/elaa025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
64 Seib K, Jennings M. Epigenetics of infectious diseases. Medical Epigenetics 2021. [DOI: 10.1016/b978-0-12-823928-5.00016-5] [Reference Citation Analysis]
65 Wang L, Maimaitiyiming Y, Su K, Hsu C. RNA m6A Modification: The Mediator Between Cellular Stresses and Biological Effects. Epitranscriptomics 2021. [DOI: 10.1007/978-3-030-71612-7_13] [Reference Citation Analysis]
66 Pan XY, Huang C, Li J. The emerging roles of m6A modification in liver carcinogenesis. Int J Biol Sci 2021;17:271-84. [PMID: 33390849 DOI: 10.7150/ijbs.50003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
67 McFadden MJ, Horner SM. N6-Methyladenosine Regulates Host Responses to Viral Infection. Trends Biochem Sci 2021;46:366-77. [PMID: 33309325 DOI: 10.1016/j.tibs.2020.11.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
68 Price AM, Hayer KE, McIntyre ABR, Gokhale NS, Abebe JS, Della Fera AN, Mason CE, Horner SM, Wilson AC, Depledge DP, Weitzman MD. Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nat Commun 2020;11:6016. [PMID: 33243990 DOI: 10.1038/s41467-020-19787-6] [Cited by in Crossref: 59] [Cited by in F6Publishing: 65] [Article Influence: 19.7] [Reference Citation Analysis]
69 Zhang K, Zhang Y, Maharjan Y, Sugiokto FG, Wan J, Li R. Caspases switch off m6A RNA modification pathway to reactivate a ubiquitous human tumor virus.. [DOI: 10.1101/2020.11.12.377127] [Reference Citation Analysis]
70 Li I, Chen YG. Emerging roles of circular RNAs in innate immunity. Curr Opin Immunol 2021;68:107-15. [PMID: 33176221 DOI: 10.1016/j.coi.2020.10.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
71 Ma Z, Gao X, Shuai Y, Xing X, Ji J. The m6A epitranscriptome opens a new charter in immune system logic. Epigenetics 2021;16:819-37. [PMID: 33070685 DOI: 10.1080/15592294.2020.1827722] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
72 Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020;12:E984. [PMID: 32899736 DOI: 10.3390/v12090984] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 17.0] [Reference Citation Analysis]
73 Li F, Wang H, Huang H, Zhang L, Wang D, Wan Y. m6A RNA Methylation Regulators Participate in the Malignant Progression and Have Clinical Prognostic Value in Lung Adenocarcinoma. Front Genet 2020;11:994. [PMID: 33193582 DOI: 10.3389/fgene.2020.00994] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
74 Clé M, Eldin P, Briant L, Lannuzel A, Simonin Y, Van de Perre P, Cabié A, Salinas S. Neurocognitive impacts of arbovirus infections. J Neuroinflammation 2020;17:233. [PMID: 32778106 DOI: 10.1186/s12974-020-01904-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
75 Xue H, Wei Z, Chen K, Tang Y, Wu X, Su J, Meng J. Prediction of RNA Methylation Status From Gene Expression Data Using Classification and Regression Methods. Evol Bioinform Online 2020;16:1176934320915707. [PMID: 32733123 DOI: 10.1177/1176934320915707] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
76 Asada K, Bolatkan A, Takasawa K, Komatsu M, Kaneko S, Hamamoto R. Critical Roles of N6-Methyladenosine (m6A) in Cancer and Virus Infection. Biomolecules 2020;10:E1071. [PMID: 32709063 DOI: 10.3390/biom10071071] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
77 Lu J, Qian J, Yin S, Zhou L, Zheng S, Zhang W. Mechanisms of RNA N6-Methyladenosine in Hepatocellular Carcinoma: From the Perspectives of Etiology. Front Oncol 2020;10:1105. [PMID: 32733807 DOI: 10.3389/fonc.2020.01105] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
78 Williams GD, Gokhale NS, Snider DL, Horner SM. The mRNA Cap 2'-O-Methyltransferase CMTR1 Regulates the Expression of Certain Interferon-Stimulated Genes. mSphere 2020;5:e00202-20. [PMID: 32404510 DOI: 10.1128/mSphere.00202-20] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
79 McIntyre ABR, Gokhale NS, Cerchietti L, Jaffrey SR, Horner SM, Mason CE. Limits in the detection of m6A changes using MeRIP/m6A-seq. Sci Rep 2020;10:6590. [PMID: 32313079 DOI: 10.1038/s41598-020-63355-3] [Cited by in Crossref: 81] [Cited by in F6Publishing: 87] [Article Influence: 27.0] [Reference Citation Analysis]
80 Jia L, Chen J, Liu H, Fan W, Wang D, Li J, Liu D. Potential m6A and m5C Methylations within the Genome of A Chinese African Swine Fever Virus Strain. Virol Sin 2021;36:321-4. [PMID: 32270427 DOI: 10.1007/s12250-020-00217-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
81 Williams GD, Gokhale NS, Snider DL, Horner SM. The mRNA cap 2’O methyltransferase CMTR1 regulates the expression of certain interferon-stimulated genes.. [DOI: 10.1101/2020.03.05.980045] [Reference Citation Analysis]
82 Oyarzún-Arrau A, Alonso-Palomares L, Valiente-Echeverría F, Osorio F, Soto-Rifo R. Crosstalk between RNA Metabolism and Cellular Stress Responses during Zika Virus Replication. Pathogens 2020;9:E158. [PMID: 32106582 DOI: 10.3390/pathogens9030158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
83 Barranco C. Viral infection linked to m6A alterations in host mRNAs. Nat Rev Mol Cell Biol 2020;21:64-5. [PMID: 31853005 DOI: 10.1038/s41580-019-0202-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
84 [DOI: 10.1101/865485] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
85 [DOI: 10.1101/657130] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Reference Citation Analysis]