BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion 2015;20:34-42. [DOI: 10.1016/j.mito.2014.10.006] [Cited by in Crossref: 65] [Cited by in F6Publishing: 64] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Lee M. Effect of mitochondrial stress on systemic metabolism: Mitochondrial stress and metabolism. Ann N Y Acad Sci 2015;1350:61-5. [DOI: 10.1111/nyas.12822] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
2 Mick E, Titov DV, Skinner OS, Sharma R, Jourdain AA, Mootha VK. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. Elife 2020;9:e49178. [PMID: 32463360 DOI: 10.7554/eLife.49178] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
3 Yang M, Darwish T, Larraufie P, Rimmington D, Cimino I, Goldspink DA, Jenkins B, Koulman A, Brighton CA, Ma M, Lam BYH, Coll AP, O'Rahilly S, Reimann F, Gribble FM. Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Sci Rep 2021;11:2529. [PMID: 33510216 DOI: 10.1038/s41598-021-81349-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
4 Lehtonen JM, Auranen M, Darin N, Sofou K, Bindoff L, Hikmat O, Uusimaa J, Vieira P, Tulinius M, Lönnqvist T, de Coo IF, Suomalainen A, Isohanni P. Diagnostic value of serum biomarkers FGF21 and GDF15 compared to muscle sample in mitochondrial disease. J Inherit Metab Dis 2021;44:469-80. [PMID: 32857451 DOI: 10.1002/jimd.12307] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
5 Nohara S, Ishii A, Yamamoto F, Yanagiha K, Moriyama T, Tozaka N, Miyake Z, Yatsuga S, Koga Y, Hosaka T, Terada M, Yamaguchi T, Aizawa S, Mamada N, Tsuji H, Tomidokoro Y, Nakamagoe K, Ishii K, Watanabe M, Tamaoka A. GDF-15, a mitochondrial disease biomarker, is associated with the severity of multiple sclerosis. J Neurol Sci 2019;405:116429. [PMID: 31476622 DOI: 10.1016/j.jns.2019.116429] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
6 Davis RL, Liang C, Sue CM. Mitochondrial diseases. Neurogenetics, Part I. Elsevier; 2018. pp. 125-41. [DOI: 10.1016/b978-0-444-63233-3.00010-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
7 Liu H, Liu J, Si L, Guo C, Liu W, Liu Y. GDF-15 promotes mitochondrial function and proliferation in neuronal HT22 cells. J Cell Biochem 2019;120:10530-47. [PMID: 30635935 DOI: 10.1002/jcb.28339] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
8 Gojanovich GS, Jacobson DL, Broadwell C, Karalius B, Kirmse B, Geffner ME, Jao J, Van Dyke RB, McFarland EJ, Silio M, Crain M, Gerschenson M; Pediatric HIV/AIDS Cohort Study. Associations of FGF21 and GDF15 with mitochondrial dysfunction in children living with perinatally-acquired HIV: A cross-sectional evaluation of pediatric AIDS clinical trials group 219/219C. PLoS One 2021;16:e0261563. [PMID: 34972147 DOI: 10.1371/journal.pone.0261563] [Reference Citation Analysis]
9 Oba K, Ishikawa J, Tamura Y, Fujita Y, Ito M, Iizuka A, Fujiwara Y, Kodera R, Toba A, Toyoshima K, Chiba Y, Mori S, Tanaka M, Ito H, Harada K, Araki A. Serum growth differentiation factor 15 level is associated with muscle strength and lower extremity function in older patients with cardiometabolic disease. Geriatr Gerontol Int 2020;20:980-7. [DOI: 10.1111/ggi.14021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Koga Y, Povalko N, Inoue E, Ishii A, Fujii K, Fujii T, Murayama K, Mogami Y, Hata I, Ikawa M, Fukami K, Fukumoto Y, Nomura M, Ichikawa K, Yoshida K. A new diagnostic indication device of a biomarker growth differentiation factor 15 for mitochondrial diseases: From laboratory to automated inspection. J Inherit Metab Dis 2021;44:358-66. [PMID: 32965044 DOI: 10.1002/jimd.12317] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
11 Järvilehto J, Harjuhaahto S, Palu E, Auranen M, Kvist J, Zetterberg H, Koskivuori J, Lehtonen M, Saukkonen AM, Jokela M, Ylikallio E, Tyynismaa H. Serum Creatine, Not Neurofilament Light, Is Elevated in CHCHD10-Linked Spinal Muscular Atrophy. Front Neurol 2022;13:793937. [DOI: 10.3389/fneur.2022.793937] [Reference Citation Analysis]
12 Kemppainen E, George J, Garipler G, Tuomela T, Kiviranta E, Soga T, Dunn CD, Jacobs HT. Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth. PLoS One 2016;11:e0145836. [PMID: 26812173 DOI: 10.1371/journal.pone.0145836] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
13 Steele HE, Horvath R, Lyon JJ, Chinnery PF. Monitoring clinical progression with mitochondrial disease biomarkers. Brain. 2017;140:2530-2540. [PMID: 28969370 DOI: 10.1093/brain/awx168] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
14 Mancuso M, McFarland R, Klopstock T, Hirano M; consortium on Trial Readiness in Mitochondrial Myopathies. International Workshop:: Outcome measures and clinical trial readiness in primary mitochondrial myopathies in children and adults. Consensus recommendations. 16-18 November 2016, Rome, Italy. Neuromuscul Disord 2017;27:1126-37. [PMID: 29074296 DOI: 10.1016/j.nmd.2017.08.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 5.6] [Reference Citation Analysis]
15 Mungo E, Bergandi L, Salaroglio IC, Doublier S. Pyruvate Treatment Restores the Effectiveness of Chemotherapeutic Agents in Human Colon Adenocarcinoma and Pleural Mesothelioma Cells. Int J Mol Sci 2018;19:E3550. [PMID: 30423827 DOI: 10.3390/ijms19113550] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
16 Koga Y, Povalko N, Inoue E, Nashiki K, Tanaka M. Biomarkers and clinical rating scales for sodium pyruvate therapy in patients with mitochondrial disease. Mitochondrion 2019;48:11-5. [PMID: 30738201 DOI: 10.1016/j.mito.2019.02.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
17 Hong JH, Ku BJ, Shong M. Response: GDF15 Is a Novel Biomarker for Impaired Fasting Glucose (Diabetes Metab J 2014;38:472-9). Diabetes Metab J 2015;39:84-6. [PMID: 25729718 DOI: 10.4093/dmj.2015.39.1.84] [Reference Citation Analysis]
18 Sasaki K, Uchiumi T, Toshima T, Yagi M, Do Y, Hirai H, Igami K, Gotoh K, Kang D. Mitochondrial translation inhibition triggers ATF4 activation, leading to integrated stress response but not to mitochondrial unfolded protein response. Biosci Rep 2020;40:BSR20201289. [PMID: 33165592 DOI: 10.1042/BSR20201289] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
19 Arauna D, García F, Rodríguez-Mañas L, Marrugat J, Sáez C, Alarcón M, Wehinger S, Espinosa-Parrilla Y, Palomo I, Fuentes E. Older adults with frailty syndrome present an altered platelet function and an increased level of circulating oxidative stress and mitochondrial dysfunction biomarker GDF-15. Free Radic Biol Med 2020;149:64-71. [PMID: 31926293 DOI: 10.1016/j.freeradbiomed.2020.01.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Fujita Y, Ito M, Ohsawa I. Mitochondrial stress and GDF15 in the pathophysiology of sepsis. Arch Biochem Biophys 2020;696:108668. [PMID: 33188737 DOI: 10.1016/j.abb.2020.108668] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Kim KH, Lee MS. GDF15 as a central mediator for integrated stress response and a promising therapeutic molecule for metabolic disorders and NASH. Biochim Biophys Acta Gen Subj 2021;1865:129834. [PMID: 33358864 DOI: 10.1016/j.bbagen.2020.129834] [Reference Citation Analysis]
22 Montero R, Yubero D, Villarroya J, Henares D, Jou C, Rodríguez MA, Ramos F, Nascimento A, Ortez CI, Campistol J, Perez-Dueñas B, O'Callaghan M, Pineda M, Garcia-Cazorla A, Oferil JC, Montoya J, Ruiz-Pesini E, Emperador S, Meznaric M, Campderros L, Kalko SG, Villarroya F, Artuch R, Jimenez-Mallebrera C. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction. PLoS One 2016;11:e0148709. [PMID: 26867126 DOI: 10.1371/journal.pone.0148709] [Cited by in Crossref: 76] [Cited by in F6Publishing: 76] [Article Influence: 12.7] [Reference Citation Analysis]
23 Rose G, Santoro A, Salvioli S. Mitochondria and mitochondria-induced signalling molecules as longevity determinants. Mechanisms of Ageing and Development 2017;165:115-28. [DOI: 10.1016/j.mad.2016.12.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
24 Ye R, Tan C, Ji L, Mao Z. Coumarin-appended phosphorescent cyclometalated iridium( iii ) complexes as mitochondria-targeted theranostic anticancer agents. Dalton Trans 2016;45:13042-51. [DOI: 10.1039/c6dt00601a] [Cited by in Crossref: 49] [Cited by in F6Publishing: 8] [Article Influence: 8.2] [Reference Citation Analysis]
25 Tsygankova PG, Itkis YS, Krylova TD, Kurkina MV, Bychkov IO, Ilyushkina AA, Zabnenkova VV, Mikhaylova SV, Pechatnikova NL, Sheremet NL, Zakharova EY. Plasma FGF‐21 and GDF‐15 are elevated in different inherited metabolic diseases and are not diagnostic for mitochondrial disorders. Jrnl of Inher Metab Disea 2019;42:918-33. [DOI: 10.1002/jimd.12142] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
26 Matsuhashi T, Sato T, Kanno SI, Suzuki T, Matsuo A, Oba Y, Kikusato M, Ogasawara E, Kudo T, Suzuki K, Ohara O, Shimbo H, Nanto F, Yamaguchi H, Saigusa D, Mukaiyama Y, Watabe A, Kikuchi K, Shima H, Mishima E, Akiyama Y, Oikawa Y, Hsin-Jung HO, Akiyama Y, Suzuki C, Uematsu M, Ogata M, Kumagai N, Toyomizu M, Hozawa A, Mano N, Owada Y, Aiba S, Yanagisawa T, Tomioka Y, Kure S, Ito S, Nakada K, Hayashi KI, Osaka H, Abe T. Mitochonic Acid 5 (MA-5) Facilitates ATP Synthase Oligomerization and Cell Survival in Various Mitochondrial Diseases. EBioMedicine 2017;20:27-38. [PMID: 28579242 DOI: 10.1016/j.ebiom.2017.05.016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
27 Tsai VWW, Husaini Y, Sainsbury A, Brown DA, Breit SN. The MIC-1/GDF15-GFRAL Pathway in Energy Homeostasis: Implications for Obesity, Cachexia, and Other Associated Diseases. Cell Metab. 2018;28:353-368. [PMID: 30184485 DOI: 10.1016/j.cmet.2018.07.018] [Cited by in Crossref: 107] [Cited by in F6Publishing: 104] [Article Influence: 35.7] [Reference Citation Analysis]
28 Liu H, Huang Y, Lyu Y, Dai W, Tong Y, Li Y. GDF15 as a biomarker of ageing. Exp Gerontol 2021;146:111228. [PMID: 33421539 DOI: 10.1016/j.exger.2021.111228] [Reference Citation Analysis]
29 Lin Y, Ji K, Ma X, Liu S, Li W, Zhao Y, Yan C. Accuracy of FGF-21 and GDF-15 for the diagnosis of mitochondrial disorders: A meta-analysis. Ann Clin Transl Neurol 2020;7:1204-13. [PMID: 32585080 DOI: 10.1002/acn3.51104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Moehle EA, Shen K, Dillin A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J Biol Chem 2019;294:5396-407. [PMID: 29622680 DOI: 10.1074/jbc.TM117.000893] [Cited by in Crossref: 66] [Cited by in F6Publishing: 42] [Article Influence: 16.5] [Reference Citation Analysis]
31 Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, Clish CB, Pierce K, Walker MA, Fryer R, Oglesbee D, Mao X, Shungu DC, Khatri A, Hirano M, De Vivo DC, Mootha VK. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest 2021;131:136055. [PMID: 33463549 DOI: 10.1172/JCI136055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
32 Murayama K, Shimura M, Liu Z, Okazaki Y, Ohtake A. Recent topics: the diagnosis, molecular genesis, and treatment of mitochondrial diseases. J Hum Genet 2019;64:113-25. [PMID: 30459337 DOI: 10.1038/s10038-018-0528-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
33 Shchelochkov OA, Manoli I, Juneau P, Sloan JL, Ferry S, Myles J, Schoenfeld M, Pass A, McCoy S, Van Ryzin C, Wenger O, Levin M, Zein W, Huryn L, Snow J, Chlebowski C, Thurm A, Kopp JB, Chen KY, Venditti CP. Severity modeling of propionic acidemia using clinical and laboratory biomarkers. Genet Med 2021;23:1534-42. [PMID: 34007002 DOI: 10.1038/s41436-021-01173-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Bárcena C, Mayoral P, Quirós PM. Mitohormesis, an Antiaging Paradigm. Mitochondria and Longevity. Elsevier; 2018. pp. 35-77. [DOI: 10.1016/bs.ircmb.2018.05.002] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 11.5] [Reference Citation Analysis]
35 Campderrós L, Sánchez-Infantes D, Villarroya J, Nescolarde L, Bayès-Genis A, Cereijo R, Roca E, Villarroya F. Altered GDF15 and FGF21 Levels in Response to Strenuous Exercise: A Study in Marathon Runners. Front Physiol 2020;11:550102. [PMID: 33329017 DOI: 10.3389/fphys.2020.550102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 De Spiegeleer A, Elewaut D, Van Den Noortgate N, Janssens Y, Debunne N, Van Langenhove S, Govindarajan S, De Spiegeleer B, Wynendaele E. WITHDRAWN: This article has been withdrawn. Biochim Biophys Acta Mol Basis Dis 2019;:165585. [PMID: 31678164 DOI: 10.1016/j.bbadis.2019.165585] [Reference Citation Analysis]
37 Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M. Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders: GDF15 in aging and age-related disorders. Geriatrics & Gerontology International 2016;16:17-29. [DOI: 10.1111/ggi.12724] [Cited by in Crossref: 85] [Cited by in F6Publishing: 81] [Article Influence: 14.2] [Reference Citation Analysis]
38 Hubens WHG, Vallbona-Garcia A, de Coo IFM, van Tienen FHJ, Webers CAB, Smeets HJM, Gorgels TGMF. Blood biomarkers for assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2021:S1567-7249(21)00148-3. [PMID: 34740866 DOI: 10.1016/j.mito.2021.10.008] [Reference Citation Analysis]
39 Wang SF, Chen S, Tseng LM, Lee HC. Role of the mitochondrial stress response in human cancer progression. Exp Biol Med (Maywood) 2020;245:861-78. [PMID: 32326760 DOI: 10.1177/1535370220920558] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
40 Conte M, Martucci M, Chiariello A, Franceschi C, Salvioli S. Mitochondria, immunosenescence and inflammaging: a role for mitokines? Semin Immunopathol 2020;42:607-17. [PMID: 32757036 DOI: 10.1007/s00281-020-00813-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
41 Fujita Y, Iketani M, Ito M, Ohsawa I. Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts. Experimental Gerontology 2022;165:111866. [DOI: 10.1016/j.exger.2022.111866] [Reference Citation Analysis]
42 Klaus S, Ost M. Mitochondrial uncoupling and longevity - A role for mitokines? Exp Gerontol. 2020;130:110796. [PMID: 31786315 DOI: 10.1016/j.exger.2019.110796] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
43 Yatsuga S, Fujita Y, Ishii A, Fukumoto Y, Arahata H, Kakuma T, Kojima T, Ito M, Tanaka M, Saiki R, Koga Y. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann Neurol. 2015;78:814-823. [PMID: 26463265 DOI: 10.1002/ana.24506] [Cited by in Crossref: 126] [Cited by in F6Publishing: 121] [Article Influence: 18.0] [Reference Citation Analysis]
44 Li M, Zhou S, Chen C, Ma L, Luo D, Tian X, Dong X, Zhou Y, Yang Y, Cui Y. Therapeutic potential of pyruvate therapy for patients with mitochondrial diseases: a systematic review. Ther Adv Endocrinol Metab 2020;11:2042018820938240. [PMID: 32695307 DOI: 10.1177/2042018820938240] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Lehtonen JM, Forsström S, Bottani E, Viscomi C, Baris OR, Isoniemi H, Höckerstedt K, Österlund P, Hurme M, Jylhävä J, Leppä S, Markkula R, Heliö T, Mombelli G, Uusimaa J, Laaksonen R, Laaksovirta H, Auranen M, Zeviani M, Smeitink J, Wiesner RJ, Nakada K, Isohanni P, Suomalainen A. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology 2016;87:2290-9. [PMID: 27794108 DOI: 10.1212/WNL.0000000000003374] [Cited by in Crossref: 98] [Cited by in F6Publishing: 58] [Article Influence: 16.3] [Reference Citation Analysis]
46 Lu H, Wu PF, Ma DL, Zhang W, Sun M. Growth Factors and Their Roles in Multiple Sclerosis Risk. Front Immunol 2021;12:768682. [PMID: 34745143 DOI: 10.3389/fimmu.2021.768682] [Reference Citation Analysis]
47 Johann K, Kleinert M, Klaus S. The Role of GDF15 as a Myomitokine. Cells 2021;10:2990. [PMID: 34831213 DOI: 10.3390/cells10112990] [Reference Citation Analysis]
48 Conte M, Ostan R, Fabbri C, Santoro A, Guidarelli G, Vitale G, Mari D, Sevini F, Capri M, Sandri M, Monti D, Franceschi C, Salvioli S. Human Aging and Longevity Are Characterized by High Levels of Mitokines. The Journals of Gerontology: Series A 2019;74:600-7. [DOI: 10.1093/gerona/gly153] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 16.0] [Reference Citation Analysis]
49 Jeppesen TD, Madsen KL, Poulsen NS, Løkken N, Vissing J. Exercise Testing, Physical Training and Fatigue in Patients with Mitochondrial Myopathy Related to mtDNA Mutations. J Clin Med 2021;10:1796. [PMID: 33924201 DOI: 10.3390/jcm10081796] [Reference Citation Analysis]
50 Garrido-Pérez N, Vela-Sebastián A, López-Gallardo E, Emperador S, Iglesias E, Meade P, Jiménez-Mallebrera C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E. Oxidative Phosphorylation Dysfunction Modifies the Cell Secretome. Int J Mol Sci 2020;21:E3374. [PMID: 32397676 DOI: 10.3390/ijms21093374] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Choi MJ, Jung SB, Lee SE, Kang SG, Lee JH, Ryu MJ, Chung HK, Chang JY, Kim YK, Hong HJ, Kim H, Kim HJ, Lee CH, Mardinoglu A, Yi HS, Shong M. An adipocyte-specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet-induced obesity in mouse models. Diabetologia 2020;63:837-52. [PMID: 31925461 DOI: 10.1007/s00125-019-05082-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
52 Fukuda M, Nagao Y. Dynamic derangement in amino acid profile during and after a stroke-like episode in adult-onset mitochondrial disease: a case report. J Med Case Rep 2019;13:313. [PMID: 31630688 DOI: 10.1186/s13256-019-2255-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
53 Chung HK, Ryu D, Kim KS, Chang JY, Kim YK, Yi HS, Kang SG, Choi MJ, Lee SE, Jung SB, Ryu MJ, Kim SJ, Kweon GR, Kim H, Hwang JH, Lee CH, Lee SJ, Wall CE, Downes M, Evans RM, Auwerx J, Shong M. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol 2017;216:149-65. [PMID: 27986797 DOI: 10.1083/jcb.201607110] [Cited by in Crossref: 147] [Cited by in F6Publishing: 135] [Article Influence: 24.5] [Reference Citation Analysis]
54 Poulsen NS, Madsen KL, Hornsyld TM, Eisum AV, Fornander F, Buch AE, Stemmerik MG, Ruiz-Ruiz C, Krag TO, Vissing J. Growth and differentiation factor 15 as a biomarker for mitochondrial myopathy. Mitochondrion 2020;50:35-41. [PMID: 31669236 DOI: 10.1016/j.mito.2019.10.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
55 Hai B, Zhao Q, Deveau MA, Liu F. Delivery of Sonic Hedgehog Gene Repressed Irradiation-induced Cellular Senescence in Salivary Glands by Promoting DNA Repair and Reducing Oxidative Stress. Theranostics 2018;8:1159-67. [PMID: 29464006 DOI: 10.7150/thno.23373] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
56 Melvin A, Lacerda E, Dockrell HM, O'Rahilly S, Nacul L. Circulating levels of GDF15 in patients with myalgic encephalomyelitis/chronic fatigue syndrome. J Transl Med 2019;17:409. [PMID: 31801546 DOI: 10.1186/s12967-019-02153-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
57 Klaus S, Igual Gil C, Ost M. Regulation of diurnal energy balance by mitokines. Cell Mol Life Sci 2021;78:3369-84. [PMID: 33464381 DOI: 10.1007/s00018-020-03748-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
58 Watson E, Ahmad K, Fraser CL. The neuro-ophthalmology of inherited myopathies. Current Opinion in Ophthalmology 2019;30:476-83. [DOI: 10.1097/icu.0000000000000610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
59 Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 2018;19:109-20. [DOI: 10.1038/nrm.2017.110] [Cited by in Crossref: 222] [Cited by in F6Publishing: 203] [Article Influence: 44.4] [Reference Citation Analysis]
60 Li P, Lv H, Zhang B, Duan R, Zhang X, Lin P, Song C, Liu Y. Growth Differentiation Factor 15 Protects SH-SY5Y Cells From Rotenone-Induced Toxicity by Suppressing Mitochondrial Apoptosis. Front Aging Neurosci 2022;14:869558. [DOI: 10.3389/fnagi.2022.869558] [Reference Citation Analysis]
61 Ahmed ST, Craven L, Russell OM, Turnbull DM, Vincent AE. Diagnosis and Treatment of Mitochondrial Myopathies. Neurotherapeutics 2018;15:943-53. [PMID: 30406383 DOI: 10.1007/s13311-018-00674-4] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
62 De Spiegeleer A, Elewaut D, Van Den Noortgate N, Janssens Y, Debunne N, Van Langenhove S, Govindarajan S, De Spiegeleer B, Wynendaele E. Quorum sensing molecules as a novel microbial factor impacting muscle cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020;1866:165646. [DOI: 10.1016/j.bbadis.2019.165646] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
63 Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018;47:214-77. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Cited by in Crossref: 174] [Cited by in F6Publishing: 144] [Article Influence: 43.5] [Reference Citation Analysis]
64 Kim KH, Kim SH, Han DH, Jo YS, Lee YH, Lee MS. Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice. Sci Rep. 2018;8:6789. [PMID: 29717162 DOI: 10.1038/s41598-018-25098-0] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 8.5] [Reference Citation Analysis]
65 Soustek MS, Balsa E, Barrow JJ, Jedrychowski M, Vogel R, Jan Smeitink, Gygi SP, Puigserver P. Inhibition of the ER stress IRE1α inflammatory pathway protects against cell death in mitochondrial complex I mutant cells. Cell Death Dis 2018;9:658. [PMID: 29855477 DOI: 10.1038/s41419-018-0696-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
66 Srivastava S. The Mitochondrial Basis of Aging and Age-Related Disorders. Genes (Basel) 2017;8:E398. [PMID: 29257072 DOI: 10.3390/genes8120398] [Cited by in Crossref: 97] [Cited by in F6Publishing: 83] [Article Influence: 19.4] [Reference Citation Analysis]
67 Choi JY, Kwon EY, Choi MS. Elucidation of the Metabolic and Transcriptional Responses of an Oriental Herbal Medicine, Bangpungtongseong-san, to Nonalcoholic Fatty Liver Disease in Diet-Induced Obese Mice. J Med Food 2019;22:928-36. [PMID: 31390281 DOI: 10.1089/jmf.2018.4383] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
68 El-Hattab AW, Scaglia F. Mitochondrial cytopathies. Cell Calcium 2016;60:199-206. [PMID: 26996063 DOI: 10.1016/j.ceca.2016.03.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 7.5] [Reference Citation Analysis]
69 Rahman J, Rahman S. Mitochondrial medicine in the omics era. The Lancet 2018;391:2560-74. [DOI: 10.1016/s0140-6736(18)30727-x] [Cited by in Crossref: 106] [Cited by in F6Publishing: 52] [Article Influence: 26.5] [Reference Citation Analysis]
70 Davis RL, Liang C, Sue CM. A comparison of current serum biomarkers as diagnostic indicators of mitochondrial diseases. Neurology 2016;86:2010-5. [PMID: 27164684 DOI: 10.1212/WNL.0000000000002705] [Cited by in Crossref: 54] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
71 Peñas A, Fernández-De la Torre M, Laine-Menéndez S, Lora D, Illescas M, García-Bartolomé A, Morales-Conejo M, Arenas J, Martín MA, Morán M, Domínguez-González C, Ugalde C. Plasma Gelsolin Reinforces the Diagnostic Value of FGF-21 and GDF-15 for Mitochondrial Disorders. Int J Mol Sci 2021;22:6396. [PMID: 34203775 DOI: 10.3390/ijms22126396] [Reference Citation Analysis]
72 Park H, Kim CH, Jeong JH, Park M, Kim KS. GDF15 contributes to radiation-induced senescence through the ROS-mediated p16 pathway in human endothelial cells. Oncotarget 2016;7:9634-44. [PMID: 26909594 DOI: 10.18632/oncotarget.7457] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]