BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moreira AF, Dias DR, Correia IJ. Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous and Mesoporous Materials 2016;236:141-57. [DOI: 10.1016/j.micromeso.2016.08.038] [Cited by in Crossref: 122] [Cited by in F6Publishing: 122] [Article Influence: 20.3] [Reference Citation Analysis]
Number Citing Articles
1 Varghese S, Kumawat A, Ghoroi C. Mesoporous silica nanoparticle core-shell matrix (MSN CSM) engineered by green approach for pH triggered release of anticancer drugs. Advanced Powder Technology 2022;33:103830. [DOI: 10.1016/j.apt.2022.103830] [Reference Citation Analysis]
2 Fu J, Mao Y, Han J, Zhang P, Tan Y, Hu J, Seeberger PH, Yin J. A nitric oxide and hydrogen sulfide dual-donating nanosystem for highly synergistic gas-radiotherapy against hepatocellular carcinoma. Biomaterials Advances 2022. [DOI: 10.1016/j.bioadv.2022.213209] [Reference Citation Analysis]
3 Shah S, Famta P, Bagasariya D, Charankumar K, Sikder A, Kashikar R, Kotha AK, Chougule MB, Khatri DK, Asthana A, Raghuvanshi RS, Singh SB, Srivastava S. Tuning Mesoporous Silica Nanoparticles in Novel Avenues of Cancer Therapy. Mol Pharmaceutics. [DOI: 10.1021/acs.molpharmaceut.2c00374] [Reference Citation Analysis]
4 Singh E, Banerjee R. In vivo efficacy & phantom imaging connote the theranostic potential of a drug-loaded lipid nanobubble. Journal of Drug Delivery Science and Technology 2022;74:103568. [DOI: 10.1016/j.jddst.2022.103568] [Reference Citation Analysis]
5 Wu L, Lv R, Wang H, Gao S, Wang Y, Zhang S, Zhou H, An Y, Cao M, Ji Y. Facile fabrication of glutathione-responsive and photothermal nanocarriers with dendritic mesoporous silica nanoparticles for the controlled drug delivery. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05498-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022;14:2456. [PMID: 35626059 DOI: 10.3390/cancers14102456] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Li B, Wang T, Le Q, Qin R, Zhang Y, Zeng HC. Surface reconstruction, modification and functionalization of natural diatomites for miniaturization of shaped heterogeneous catalysts. Nano Materials Science 2022. [DOI: 10.1016/j.nanoms.2022.05.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Sayahi MH, Toosibashi M, Bahmaei M, Lijan H, Ma'mani L, Mahdavi M, Bahadorikhalili S. Pd@Py2PZ@MSN as a Novel and Efficient Catalyst for C–C Bond Formation Reactions. Front Chem 2022;10:838294. [DOI: 10.3389/fchem.2022.838294] [Reference Citation Analysis]
9 Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. IJMS 2022;23:1853. [DOI: 10.3390/ijms23031853] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wei Y, Yang W, Yang Z. An excellent universal catalyst support-mesoporous silica: Preparation, modification and applications in energy-related reactions. International Journal of Hydrogen Energy 2022;47:9537-65. [DOI: 10.1016/j.ijhydene.2022.01.048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01240-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Ganjali M, Ganjali M, Adib Sereshki MM, Ahmadinasab N, Ghalandarzadeh A, Aljabali AA, Barhoum A. Bionanomaterials for cancer therapy. Bionanotechnology : Emerging Applications of Bionanomaterials 2022. [DOI: 10.1016/b978-0-12-823915-5.00015-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Chang J, Chandrasekar N, Shen S, Shkir M, Kumar M. Biomedical applications. Silicon-Based Hybrid Nanoparticles 2022. [DOI: 10.1016/b978-0-12-824007-6.00013-7] [Reference Citation Analysis]
14 Ramalingam P, Prabakaran DS, Sivalingam K, Nallal VUM, Razia M, Patel M, Kanekar T, Krishnamoorthy D. Recent Advances in Nanomaterials-Based Drug Delivery System for Cancer Treatment. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-030-80371-1_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Goscianska J, Freund R, Wuttke S. Nanoscience versus Viruses: The SARS‐CoV‐2 Case. Adv Funct Materials 2022;32:2107826. [DOI: 10.1002/adfm.202107826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Speil N, Hoffmann F, Brieler FJ, Fröba M. From the outside to the inside: Elucidation of the mechanism of pseudomorphic transformation of SBA-15 into MCM-41 by following its time-resolved conversion. Microporous and Mesoporous Materials 2021;328:111442. [DOI: 10.1016/j.micromeso.2021.111442] [Reference Citation Analysis]
17 Gonçalves ASC, Rodrigues CF, Fernandes N, de Melo-Diogo D, Ferreira P, Moreira AF, Correia IJ. IR780 loaded gelatin-PEG coated gold core silica shell nanorods for cancer-targeted photothermal/photodynamic therapy. Biotechnol Bioeng 2021. [PMID: 34841513 DOI: 10.1002/bit.27996] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 MacCuaig WM, Fouts BL, McNally MW, Grizzle WE, Chuong P, Samykutty A, Mukherjee P, Li M, Jasinski JB, Behkam B, McNally LR. Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer. ACS Appl Mater Interfaces 2021;13:49614-30. [PMID: 34653338 DOI: 10.1021/acsami.1c09379] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
19 M. Jasim A, J. Jawad M. Pharmaceutical Applications of Vitamin E TPGS. Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects 2021. [DOI: 10.5772/intechopen.97474] [Reference Citation Analysis]
20 Yadav P, Jain J, Sherje AP. Recent advances in nanocarriers-based drug delivery for cancer therapeutics: A review. Reactive and Functional Polymers 2021;165:104970. [DOI: 10.1016/j.reactfunctpolym.2021.104970] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Trinh HT, Mohanan S, Radhakrishnan D, Tiburcius S, Yang J, Verrills NM, Karakoti A, Vinu A. Silica-based nanomaterials as drug delivery tools for skin cancer (melanoma) treatment. emergent mater 2021;4:1067-92. [DOI: 10.1007/s42247-021-00236-z] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Ibragimova AR, Gabdrakhmanov DR, Valeeva FG, Vasileva LA, Sapunova AS, Voloshina AD, Saifina AF, Gubaidullin AT, Danilaev MP, Egorova SR, Tyryshkina AA, Lamberov AA, Khamatgalimov AR, Sibgatullina GV, Samigullin DV, Petrov KA, Zakharova LY, Sinyashin OG. Mitochondria-targeted mesoporous silica nanoparticles noncovalently modified with triphenylphosphonium cation: Physicochemical characteristics, cytotoxicity and intracellular uptake. Int J Pharm 2021;604:120776. [PMID: 34098055 DOI: 10.1016/j.ijpharm.2021.120776] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. Mater Sci Eng C Mater Biol Appl 2021;127:112199. [PMID: 34225852 DOI: 10.1016/j.msec.2021.112199] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
24 Salve R, Kumar P, Ngamcherdtrakul W, Gajbhiye V, Yantasee W. Stimuli-responsive mesoporous silica nanoparticles: A custom-tailored next generation approach in cargo delivery. Mater Sci Eng C Mater Biol Appl 2021;124:112084. [PMID: 33947574 DOI: 10.1016/j.msec.2021.112084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
25 Abbasi M, Ghoran SH, Niakan MH, Jamali K, Moeini Z, Jangjou A, Izadpanah P, Amani AM. Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials 2021;319:110967. [DOI: 10.1016/j.micromeso.2021.110967] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
26 Kütük N. Mesoporous silica nanoparticles, methods of preparation and use of bone tissue engineering. International Journal of Life Sciences and Biotechnology 2021. [DOI: 10.38001/ijlsb.880711] [Reference Citation Analysis]
27 Jo H, Kitao T, Kimura A, Itoh Y, Aida T, Okuro K. Bio-adhesive Nanoporous Module: Toward Autonomous Gating. Angew Chem Int Ed Engl 2021;60:8932-7. [PMID: 33528083 DOI: 10.1002/anie.202017117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Jo H, Kitao T, Kimura A, Itoh Y, Aida T, Okuro K. Bio‐adhesive Nanoporous Module: Toward Autonomous Gating. Angew Chem 2021;133:9014-9019. [DOI: 10.1002/ange.202017117] [Reference Citation Analysis]
29 Cao J, Zaremba OT, Lei Q, Ploetz E, Wuttke S, Zhu W. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS Nano 2021;15:3900-26. [PMID: 33656324 DOI: 10.1021/acsnano.0c10144] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
30 Hakobyan AV, Burakova EA, Arabyan EA, Fokina AA, Kotsinyan AR, Vasilyeva SV, Zakaryan OS, Stetsenko DA. Antiviral Activity of Nanocomplexes of Antisense Oligonucleotides Targeting VP72 Protein in Vero Cells Infected by African Swine Fever Virus. Russ J Bioorg Chem 2021;47:411-419. [DOI: 10.1134/s1068162021020035] [Reference Citation Analysis]
31 Pergal MV, Brkljačić J, Tovilović-kovačević G, Špírková M, Kodranov ID, Manojlović DD, Ostojić S, Knežević NŽ. Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. Progress in Organic Coatings 2021;151:106049. [DOI: 10.1016/j.porgcoat.2020.106049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Sha Z, Yang S, Fu L, Geng M, Gu J, Liu X, Li S, Zhou X, He C. Manganese-doped gold core mesoporous silica particles as a nanoplatform for dual-modality imaging and chemo-chemodynamic combination osteosarcoma therapy. Nanoscale 2021;13:5077-93. [DOI: 10.1039/d0nr09220g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
33 Mirdamadi ES, Haghbin Nazarpak M, Solati-hashjin M. Metal oxide-based ceramics. Structural Biomaterials 2021. [DOI: 10.1016/b978-0-12-818831-6.00012-4] [Reference Citation Analysis]
34 Tiburcius S, Krishnan K, Yang JH, Hashemi F, Singh G, Radhakrishnan D, Trinh HT, Verrills NM, Karakoti A, Vinu A. Silica-Based Nanoparticles as Drug Delivery Vehicles for Prostate Cancer Treatment. Chem Rec 2021;21:1535-68. [PMID: 33320438 DOI: 10.1002/tcr.202000104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Zheng Z, Dai R, Jia Z, Yang X, Qin Y, Rong S, Peng X, Xie X, Wang Y, Zhang R. Biodegradable Multifunctional Nanotheranostic Based on Ag2S-Doped Hollow BSA-SiO2 for Enhancing ROS-Feedback Synergistic Antitumor Therapy. ACS Appl Mater Interfaces 2020;12:54356-66. [PMID: 33237737 DOI: 10.1021/acsami.0c14855] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
36 Uthappa U, Arvind O, Sriram G, Losic D, Ho-young-jung, Kigga M, Kurkuri MD. Nanodiamonds and their surface modification strategies for drug delivery applications. Journal of Drug Delivery Science and Technology 2020;60:101993. [DOI: 10.1016/j.jddst.2020.101993] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
37 Sarkisyan ZM. Biologically Active Fullerene Derivatives. Russ J Gen Chem 2020;90:1853-62. [DOI: 10.1134/s1070363220100072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Mirzaei M, Zarch MB, Darroudi M, Sayyadi K, Keshavarz ST, Sayyadi J, Fallah A, Maleki H. Silica Mesoporous Structures: Effective Nanocarriers in Drug Delivery and Nanocatalysts. Applied Sciences 2020;10:7533. [DOI: 10.3390/app10217533] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
39 Ding X, Yu W, Wan Y, Yang M, Hua C, Peng N, Liu Y. A pH/ROS-responsive, tumor-targeted drug delivery system based on carboxymethyl chitin gated hollow mesoporous silica nanoparticles for anti-tumor chemotherapy. Carbohydrate Polymers 2020;245:116493. [DOI: 10.1016/j.carbpol.2020.116493] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
40 Chen S, Liu J, Li Y, Wu X, Yuan Q, Yang R, Zheng J. Hypoxia-responsive fluorescent nanoprobe for imaging and cancer therapy. TrAC Trends in Analytical Chemistry 2020;131:116010. [DOI: 10.1016/j.trac.2020.116010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
41 Arumugaperumal R, Shellaiah M, Srinivasadesikan V, Awasthi K, Sun KW, Lin M, Ohta N, Chung W. Diversiform Nanostructures Constructed from Tetraphenylethene and Pyrene-Based Acid/Base Controllable Molecular Switching Amphiphilic [2]Rotaxanes with Tunable Aggregation-Induced Static Excimers. ACS Appl Mater Interfaces 2020;12:45222-34. [DOI: 10.1021/acsami.0c14107] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
42 Jimenez-Falcao S, Joga N, García-Fernández A, Llopis Lorente A, Torres D, de Luis B, Sancenón F, Martínez-Ruiz P, Martínez-Máñez R, Villalonga R. Janus nanocarrier powered by bi-enzymatic cascade system for smart delivery. J Mater Chem B 2019;7:4669-76. [PMID: 31364688 DOI: 10.1039/c9tb00938h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
43 Goubault C, Sciortino F, Mongin O, Jarry U, Bostoën M, Jakobczyk H, Burel A, Dutertre S, Troadec M, Kahn ML, Chevance S, Gauffre F. The Ouzo effect: A tool to elaborate high-payload nanocapsules. Journal of Controlled Release 2020;324:430-9. [DOI: 10.1016/j.jconrel.2020.05.023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
44 Zhou M, Xing Y, Li W, Li X, Zhang X, Du X. Thioether-bridged mesoporous organosilica nanocapsules with weak acid-triggered charge reversal for drug delivery. Microporous and Mesoporous Materials 2020;302:110242. [DOI: 10.1016/j.micromeso.2020.110242] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
45 de Oliveira ÉA, Goding CR, Maria-engler SS. Tumor Models and Cancer Systems Biology for the Investigation of Anticancer Drugs and Resistance Development. In: Schäfer-korting M, Stuchi Maria-engler S, Landsiedel R, editors. Organotypic Models in Drug Development. Cham: Springer International Publishing; 2021. pp. 269-301. [DOI: 10.1007/164_2020_369] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Alavarse AC, de Castro CE, dos Santos Andrade L, Ferreira FF, Bonvent JJ. Synthesis of nanostructured mesoporous silica-coated magnetic nuclei with polyelectrolyte layers for tetracycline hydrochloride control release. Appl Nanosci 2020;10:3693-702. [DOI: 10.1007/s13204-020-01482-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Bagheri E, Ansari L, Sameiyan E, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Sensors design based on hybrid gold-silica nanostructures. Biosensors and Bioelectronics 2020;153:112054. [DOI: 10.1016/j.bios.2020.112054] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
48 Saman N, Alaghbari GAM, Mohtar SS, Kong H, Johari K, Ali N, Ma H. Adsorption behavior of Ag(I) onto elemental sulfur-encapsulated silica nanocapsules for industrial applications. Korean J Chem Eng 2020;37:652-662. [DOI: 10.1007/s11814-019-0464-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Guimarães RS, Rodrigues CF, Moreira AF, Correia IJ. Overview of stimuli-responsive mesoporous organosilica nanocarriers for drug delivery. Pharmacol Res 2020;155:104742. [PMID: 32151682 DOI: 10.1016/j.phrs.2020.104742] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
50 Leitão MM, de Melo-Diogo D, Alves CG, Lima-Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020;9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 22.0] [Reference Citation Analysis]
51 Mortezaei Z, Zendehdel M, Bodaghifard MA. Cu complex grafted on the porous materials: synthesis, characterization and comparison of their antibacterial activity with nano-Cu/NaY zeolite. J IRAN CHEM SOC 2020;17:283-295. [DOI: 10.1007/s13738-019-01769-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Mostafavi A, Quint J, Russell C, Tamayol A. Nanocomposite hydrogels for tissue engineering applications. Biomaterials for Organ and Tissue Regeneration 2020. [DOI: 10.1016/b978-0-08-102906-0.00023-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
53 Fernandes N, Rodrigues CF, Moreira AF, Correia IJ. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater Sci 2020;8:2990-3020. [DOI: 10.1039/d0bm00222d] [Cited by in Crossref: 113] [Cited by in F6Publishing: 121] [Article Influence: 56.5] [Reference Citation Analysis]
54 Pires Celeiro S, Baltazar F, Viana-pereira M. 3D culture systems as models for solid tumors and cancer metabolism. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00006-x] [Reference Citation Analysis]
55 Elbialy NS, Aboushoushah SF, Sofi BF, Noorwali A. Multifunctional curcumin-loaded mesoporous silica nanoparticles for cancer chemoprevention and therapy. Microporous and Mesoporous Materials 2020;291:109540. [DOI: 10.1016/j.micromeso.2019.06.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 22.5] [Reference Citation Analysis]
56 Afzal M, Ameeduzzafar, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, Kumar V, Kamal MA, Nadeem MS, Aslam M, Anwar F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin Cancer Biol 2021;69:279-92. [PMID: 31870940 DOI: 10.1016/j.semcancer.2019.12.016] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 9.7] [Reference Citation Analysis]
57 García-Fernández A, Aznar E, Martínez-Máñez R, Sancenón F. New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small 2020;16:e1902242. [PMID: 31846230 DOI: 10.1002/smll.201902242] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 21.0] [Reference Citation Analysis]
58 Niu D, Jiang Y, He J, Jia X, Qin L, Hao J, Zhao W, Dai B, Li Y. Extraction-Induced Fabrication of Yolk-Shell-Structured Nanoparticles with Deformable Micellar Cores and Mesoporous Silica Shells for Multidrug Delivery. ACS Appl Bio Mater 2019;2:5707-16. [PMID: 35021564 DOI: 10.1021/acsabm.9b00759] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Yan B, Wang Y, Ma Y, Zhao J, Liu Y, Wang L. In vitro and in vivo evaluation of poly (acrylic acid) modified mesoporous silica nanoparticles as pH response carrier for β-elemene self-micro emulsifying. Int J Pharm 2019;572:118768. [PMID: 31669556 DOI: 10.1016/j.ijpharm.2019.118768] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
60 Prabhakar A, Banerjee R. Nanobubble Liposome Complexes for Diagnostic Imaging and Ultrasound-Triggered Drug Delivery in Cancers: A Theranostic Approach. ACS Omega 2019;4:15567-80. [PMID: 31572858 DOI: 10.1021/acsomega.9b01924] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 18.0] [Reference Citation Analysis]
61 Rodrigues CF, Reis CA, Moreira AF, Ferreira P, Correia IJ. Optimization of gold core-mesoporous silica shell functionalization with TPGS and PEI for cancer therapy. Microporous and Mesoporous Materials 2019;285:1-12. [DOI: 10.1016/j.micromeso.2019.04.064] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
62 Reis CA, Rodrigues CF, Moreira AF, Jacinto TA, Ferreira P, Correia IJ. Development of gold-core silica shell nanospheres coated with poly-2-ethyl-oxazoline and β-cyclodextrin aimed for cancer therapy. Materials Science and Engineering: C 2019;98:960-8. [DOI: 10.1016/j.msec.2019.01.068] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
63 Möller K, Bein T. Degradable Drug Carriers: Vanishing Mesoporous Silica Nanoparticles. Chem Mater 2019;31:4364-78. [DOI: 10.1021/acs.chemmater.9b00221] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 22.3] [Reference Citation Analysis]
64 Bernardos A, Piacenza E, Sancenón F, Hamidi M, Maleki A, Turner RJ, Martínez-Máñez R. Mesoporous Silica-Based Materials with Bactericidal Properties. Small 2019;15:e1900669. [PMID: 31033214 DOI: 10.1002/smll.201900669] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 26.0] [Reference Citation Analysis]
65 Sábio RM, Meneguin AB, Ribeiro TC, Silva RR, Chorilli M. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int J Pharm 2019;564:379-409. [PMID: 31028801 DOI: 10.1016/j.ijpharm.2019.04.067] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 20.7] [Reference Citation Analysis]
66 Sun S, Han Q, Tan S, Long Y, Liang Q, Ding M. A magnetic, luminescent and mesoporous nanocomposite as protein drug Carrier. Microporous and Mesoporous Materials 2019;277:261-266. [DOI: 10.1016/j.micromeso.2018.10.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
67 Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opinion on Drug Delivery 2019;16:219-37. [DOI: 10.1080/17425247.2019.1575806] [Cited by in Crossref: 136] [Cited by in F6Publishing: 111] [Article Influence: 45.3] [Reference Citation Analysis]
68 Doura T, Nishio T, Tamanoi F, Nakamura M. Relationship between the glutathione-responsive degradability of thiol-organosilica nanoparticles and the chemical structures. J Mater Res 2019;34:1266-78. [DOI: 10.1557/jmr.2018.501] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
69 Rodrigues CF, Jacinto TA, Moreira AF, Costa EC, Miguel SP, Correia IJ. Functionalization of AuMSS nanorods towards more effective cancer therapies. Nano Res 2019;12:719-32. [DOI: 10.1007/s12274-019-2286-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
70 Mitran R, Deaconu M, Matei C, Berger D. Mesoporous Silica as Carrier for Drug-Delivery Systems. Nanocarriers for Drug Delivery 2019. [DOI: 10.1016/b978-0-12-814033-8.00011-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
71 Shah MR, Imran M, Ullah S. Nanotechnological strategies involved in the targeted delivery of anticancer drugs. Nanocarriers for Cancer Diagnosis and Targeted Chemotherapy 2019. [DOI: 10.1016/b978-0-12-816773-1.00002-x] [Reference Citation Analysis]
72 Marín-caba L, Chariou PL, Pesquera C, Correa-duarte MA, Steinmetz NF. Tobacco Mosaic Virus-Functionalized Mesoporous Silica Nanoparticles, a Wool-Ball-like Nanostructure for Drug Delivery. Langmuir 2019;35:203-11. [DOI: 10.1021/acs.langmuir.8b03337] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
73 Zhang Y, Cao X, Xiang S, Tong Z. Hyaluronic acid coated hollow mesoporous silica nanoparticles for reduction‐triggered drug release. Micro & Nano Letters 2018;13:1550-5. [DOI: 10.1049/mnl.2018.5141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Moreira AF, Rodrigues CF, Reis CA, Costa EC, Correia IJ. Gold-core silica shell nanoparticles application in imaging and therapy: A review. Microporous and Mesoporous Materials 2018;270:168-79. [DOI: 10.1016/j.micromeso.2018.05.022] [Cited by in Crossref: 50] [Cited by in F6Publishing: 33] [Article Influence: 12.5] [Reference Citation Analysis]
75 Meier M, Ungerer J, Klinge M, Nirschl H. Formation of porous silica nanoparticles at higher reaction kinetics. Powder Technology 2018;339:801-8. [DOI: 10.1016/j.powtec.2018.08.069] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
76 Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs: NUNES et al.. Biotechnology and Bioengineering 2019;116:206-26. [DOI: 10.1002/bit.26845] [Cited by in Crossref: 300] [Cited by in F6Publishing: 309] [Article Influence: 75.0] [Reference Citation Analysis]
77 Moreira AF, Rodrigues CF, Reis CA, Costa EC, Ferreira P, Correia IJ. Development of poly-2-ethyl-2-oxazoline coated gold-core silica shell nanorods for cancer chemo-photothermal therapy. Nanomedicine 2018;13:2611-27. [DOI: 10.2217/nnm-2018-0179] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
78 Pasha SS, Fageria L, Climent C, Rath NP, Alemany P, Chowdhury R, Roy A, Laskar IR. Evaluation of novel platinum(ii) based AIE compound-encapsulated mesoporous silica nanoparticles for cancer theranostic application. Dalton Trans 2018;47:4613-24. [PMID: 29517794 DOI: 10.1039/c7dt04232a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
79 Kamegawa R, Naito M, Miyata K. Functionalization of silica nanoparticles for nucleic acid delivery. Nano Res 2018;11:5219-39. [DOI: 10.1007/s12274-018-2116-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
80 Croissant JG, Zink JI, Raehm L, Durand JO. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Adv Healthc Mater 2018;7:e1701248. [PMID: 29345434 DOI: 10.1002/adhm.201701248] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
81 Sun Y, Lin Y, Ding C, Sun W, Dai Y, Zhu X, Liu H, Luo C. An ultrasensitive and ultraselective chemiluminescence aptasensor for dopamine detection based on aptamers modified magnetic mesoporous silica @ graphite oxide polymers. Sensors and Actuators B: Chemical 2018;257:312-23. [DOI: 10.1016/j.snb.2017.10.171] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 10.8] [Reference Citation Analysis]
82 Nairi V, Magnolia S, Piludu M, Nieddu M, Caria CA, Sogos V, Vallet-Regì M, Monduzzi M, Salis A. Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization. Colloids Surf B Biointerfaces 2018;168:50-9. [PMID: 29456044 DOI: 10.1016/j.colsurfb.2018.02.019] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 9.5] [Reference Citation Analysis]
83 Tahmasbi L, Sedaghat T, Motamedi H, Kooti M. Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization. Journal of Solid State Chemistry 2018;258:517-25. [DOI: 10.1016/j.jssc.2017.11.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 9.5] [Reference Citation Analysis]
84 Zucchetto N, Reber MJ, Pestalozzi L, Schmid R, Neels A, Brühwiler D. The structure of mesoporous silica obtained by pseudomorphic transformation of SBA-15 and SBA-16. Microporous and Mesoporous Materials 2018;257:232-40. [DOI: 10.1016/j.micromeso.2017.08.046] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
85 Chiu H, Gößl D, Haddick L, Engelke H, Bein T. Clickable Multifunctional Large-Pore Mesoporous Silica Nanoparticles as Nanocarriers. Chem Mater 2018;30:644-54. [DOI: 10.1021/acs.chemmater.7b03472] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
86 Bayir S, Barras A, Boukherroub R, Szunerits S, Raehm L, Richeter S, Durand J. Mesoporous silica nanoparticles in recent photodynamic therapy applications. Photochem Photobiol Sci 2018;17:1651-74. [DOI: 10.1039/c8pp00143j] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
87 Şen Karaman D, Kettiger H. Silica-based nanoparticles as drug delivery systems. Inorganic Frameworks as Smart Nanomedicines 2018. [DOI: 10.1016/b978-0-12-813661-4.00001-8] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
88 Zhang H, Wang X, Wang P, Liu R, Hou X, Cao W, Zhong R, Liu X, Zhang Y. One-pot synthesis of biodegradable polydopamine-doped mesoporous silica nanocomposites (PMSNs) as pH-sensitive targeting drug nanocarriers for synergistic chemo-photothermal therapy. RSC Adv 2018;8:37433-40. [DOI: 10.1039/c8ra07467d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
89 Zeleňák V, Beňová E, Almáši M, Halamová D, Hornebecq V, Hronský V. Photo-switchable nanoporous silica supports for controlled drug delivery. New J Chem 2018;42:13263-71. [DOI: 10.1039/c8nj00267c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
90 He Y, Zeng B, Liang S, Long M, Xu H. Synthesis of pH-Responsive Biodegradable Mesoporous Silica–Calcium Phosphate Hybrid Nanoparticles as a High Potential Drug Carrier. ACS Appl Mater Interfaces 2017;9:44402-9. [DOI: 10.1021/acsami.7b16787] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 9.2] [Reference Citation Analysis]
91 Wu Q, Hou Y, Han G, Liu X, Tang X, Li H, Song X, Zhang G. Mixed shell mesoporous silica nanoparticles for controlled drug encapsulation and delivery. Nanomedicine 2017;12:2699-711. [DOI: 10.2217/nnm-2017-0216] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
92 He Y, Luo L, Liang S, Long M, Xu H. Amino-functionalized mesoporous silica nanoparticles as efficient carriers for anticancer drug delivery. J Biomater Appl 2017;32:524-32. [DOI: 10.1177/0885328217724638] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 7.6] [Reference Citation Analysis]
93 Kang T, Li F, Baik S, Shao W, Ling D, Hyeon T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 2017;136:98-114. [DOI: 10.1016/j.biomaterials.2017.05.013] [Cited by in Crossref: 201] [Cited by in F6Publishing: 210] [Article Influence: 40.2] [Reference Citation Analysis]
94 Sene S, Marcos-almaraz MT, Menguy N, Scola J, Volatron J, Rouland R, Grenèche J, Miraux S, Menet C, Guillou N, Gazeau F, Serre C, Horcajada P, Steunou N. Maghemite-nanoMIL-100(Fe) Bimodal Nanovector as a Platform for Image-Guided Therapy. Chem 2017;3:303-22. [DOI: 10.1016/j.chempr.2017.06.007] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 9.6] [Reference Citation Analysis]
95 Meléndez-ortiz HI, Puente-urbina B, Ibarra-vallejo E, García-uriostegui L, Ortega A. Polyacrylamide-coated MCM-48 mesoporous silica spheres: synthesis, characterization and drug delivery study. J Porous Mater 2018;25:649-56. [DOI: 10.1007/s10934-017-0477-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
96 Ding C, Xu J, Tong L, Gong G, Jiang W, Fu J. Design and Fabrication of a Novel Stimulus-Feedback Anticorrosion Coating Featured by Rapid Self-Healing Functionality for the Protection of Magnesium Alloy. ACS Appl Mater Interfaces 2017;9:21034-47. [DOI: 10.1021/acsami.7b06347] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 11.4] [Reference Citation Analysis]
97 Moreira AF, Dias DR, Costa EC, Correia IJ. Thermo- and pH-responsive nano-in-micro particles for combinatorial drug delivery to cancer cells. Eur J Pharm Sci 2017;104:42-51. [PMID: 28347775 DOI: 10.1016/j.ejps.2017.03.033] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 8.8] [Reference Citation Analysis]
98 Perez RA, Singh RK, Kim T, Kim H. Silica-based multifunctional nanodelivery systems toward regenerative medicine. Mater Horiz 2017;4:772-99. [DOI: 10.1039/c7mh00017k] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 11.4] [Reference Citation Analysis]