BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Medawar V, Messina GA, Fernández-baldo M, Raba J, Pereira SV. Fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti- Toxocara canis. Microchemical Journal 2017;130:436-41. [DOI: 10.1016/j.microc.2016.10.027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Hu G, Sheng W, Li S, Zhang Y, Wang J, Wang S. Quantum dot based multiplex fluorescence quenching immune chromatographic strips for the simultaneous determination of sulfonamide and fluoroquinolone residues in chicken samples. RSC Adv 2017;7:31123-8. [DOI: 10.1039/c7ra01753g] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
2 Zhao Y, Hu X, Hu S, Peng Y. Applications of fiber-optic biochemical sensor in microfluidic chips: A review. Biosensors and Bioelectronics 2020;166:112447. [DOI: 10.1016/j.bios.2020.112447] [Cited by in Crossref: 31] [Cited by in F6Publishing: 9] [Article Influence: 15.5] [Reference Citation Analysis]
3 Scala-benuzzi ML, Raba J, Soler-illia GJAA, Schneider RJ, Messina GA. Novel Electrochemical Paper-Based Immunocapture Assay for the Quantitative Determination of Ethinylestradiol in Water Samples. Anal Chem 2018;90:4104-11. [DOI: 10.1021/acs.analchem.8b00028] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 10.0] [Reference Citation Analysis]
4 Karuppiah S, Mishra NC, Tsai WC, Liao WS, Chou CF. Ultrasensitive and Low-Cost Paper-Based Graphene Oxide Nanobiosensor for Monitoring Water-Borne Bacterial Contamination. ACS Sens 2021;6:3214-23. [PMID: 34461015 DOI: 10.1021/acssensors.1c00851] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Aranda PR, Messina GA, Bertolino FA, Pereira SV, Fernández Baldo MA, Raba J. Nanomaterials in fluorescent laser-based immunosensors: Review and applications. Microchemical Journal 2018;141:308-23. [DOI: 10.1016/j.microc.2018.05.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
6 Jofre CF, Regiart M, Fernández-baldo MA, Bertotti M, Raba J, Messina GA. Electrochemical microfluidic immunosensor based on TES-AuNPs@Fe3O4 and CMK-8 for IgG anti-Toxocara canis determination. Analytica Chimica Acta 2020;1096:120-9. [DOI: 10.1016/j.aca.2019.10.040] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
7 Noordin R, Yunus MH, Tan Farrizam SN, Arifin N. Serodiagnostic methods for diagnosing larval toxocariasis. Adv Parasitol 2020;109:131-52. [PMID: 32381194 DOI: 10.1016/bs.apar.2020.01.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
8 Fan J, Wang M, Wang C, Cao Y. Advances in human chorionic gonadotropin detection technologies: a review. Bioanalysis 2017;9:1509-29. [DOI: 10.4155/bio-2017-0072] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 3.6] [Reference Citation Analysis]
9 Medawar-aguilar V, Jofre CF, Fernández-baldo MA, Alonso A, Angel S, Raba J, Pereira SV, Messina GA. Serological diagnosis of Toxoplasmosis disease using a fluorescent immunosensor with chitosan-ZnO-nanoparticles. Analytical Biochemistry 2019;564-565:116-22. [DOI: 10.1016/j.ab.2018.10.025] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]